અહી વર્તુળ $x ^{2}+ y ^{2}-4 x +3=0$ પરના બે બિંદુઓ $A$ અને $B$ માંથી દોરવામાં આવેલ સ્પર્શકએ ઉગમબિંદુ $O (0,0)$ આગળ મળે છે. તો ત્રિકોણ $OAB$ નું ક્ષેત્રફળ મેળવો.
$\frac{3 \sqrt{3}}{2}$
$\frac{3 \sqrt{3}}{2}$
$\frac{3}{2 \sqrt{3}}$
$\frac{3}{4 \sqrt{3}}$
વર્તુળ એ $y$ -અક્ષને બિંદુ $(0,4)$ આગળ સ્પર્શે છે અને બિંદુ $(2,0) $ માંથી પસાર થાય છે તો આપેલ પૈકી કઈ રેખા વર્તુળનો સ્પર્શક ન થાય ?
જો બિંદુ $P$ માંથી વર્તુળ $x^{2}+y^{2}-2 x-4 y+4=0$ પર સ્પર્શકો દોરવામાં આવે છે કે જેથી સ્પર્શકો વચ્ચેનો ખૂણો $\tan ^{-1}\left(\frac{12}{5}\right)$ થાય કે જ્યાં $\tan ^{-1}\left(\frac{12}{5}\right) \in(0, \pi)$ છે. જો વર્તુળનું કેન્દ્ર $C$ અને સ્પર્શકોના વર્તુળના સ્પર્શબિંદુઓ $A$ અને $B$ હોય તો $\Delta PAB$ અને $\Delta CAB$ ના ક્ષેત્રફળનો ગુણોતર મેળવો.
વર્તુળ ${x^2} + {y^2} + 6x + 6y = 2$ પરના બિંદુ $P$ આગળનો સ્પર્શકએ રેખા $5x - 2y + 6 = 0$ ને $y-$અક્ષ પરના બિંદુ $Q$ માં મળે છે તો $PQ$ ની લંબાઈ મેળવો.
રેખા $ 5x + 12y + 8 = 0 $ ને લંબ હોય, તેવા વર્તૂળ $x^2 + y^2 - 22x - 4y + 25 = 0 $ ના સ્પર્શકનું સમીકરણ....