माना वृत्त $x ^2+ y ^2-4 x +3=0$ के दो बिंदुओं $A$ तथा $B$ पर स्पर्श रेखाएँ $O (0,0)$ पर मिलती हैं। तब त्रिभुज $OAB$ का क्षेत्रफल है

  • [JEE MAIN 2022]
  • A

    $\frac{3 \sqrt{3}}{2}$

  • B

    $\frac{3 \sqrt{3}}{2}$

  • C

    $\frac{3}{2 \sqrt{3}}$

  • D

    $\frac{3}{4 \sqrt{3}}$

Similar Questions

यदि वृत्त ${x^2} + {y^2} = {r^2}$ के बिन्दु $(a, b)$ पर खींची गयी स्पर्श रेखा निर्देशांक अक्षों को बिन्दुओं $A$ तथा $B$ पर मिलती हो और $O$ मूल बिन्दु हो तो त्रिभुज $OAB$ का क्षेत्रफल होगा

यदि बिन्दु $(5, 3)$ से वृत्त ${x^2} + {y^2} + 2x + ky + 17 = 0$ पर खींची गई स्पर्श रेखा की लम्बाई $7$ हो, तो $k$ =

यदि रेखा $y = mx + c$ वृत्त ${x^2} + {y^2} - 4y = 0$ को स्पर्श करती है, तो $c$ का मान होगा

रेखा $x\cos \alpha  + y\sin \alpha  = p$, वृत्त ${x^2} + {y^2} - 2ax\cos \alpha  - 2ay\sin \alpha  = 0$ की स्पर्श रेखा होगी, यदि $p = $

बिन्दु $(1, 1)$ पर वृत्त $2{x^2} + 2{y^2} - 2x - 5y + 3 = 0$ के अभिलम्ब का समीकरण है