વર્તુળ ${x^2} + {y^2} + 6x + 6y = 2$ પરના બિંદુ $P$ આગળનો સ્પર્શકએ રેખા $5x - 2y + 6 = 0$ ને $y-$અક્ષ પરના બિંદુ $Q$ માં મળે છે તો $PQ$ ની લંબાઈ મેળવો.
$4$
$2\sqrt 5 $
$5$
$3\sqrt 5 $
બિંદુ$\left( {\frac{1}{{\sqrt 2 }},\,\frac{1}{{\sqrt 2 }}} \right)$ માંથી વર્તૂળ $x^2 + y^2 = 9$ ના અભિલબનું સમીકરણ....
વિધાન $(A)\ : \theta$ ના બધા મુલ્ય માટે રેખા $(x -3)\ cos\theta + (y - 3)\ sin\theta = 1$ એ વર્તૂળ $(x - 3)^2 + (y - 3)^2\,\,=1$ ને સ્પર્શેં છે.
કારણ $(R)$ : $\theta$ ના બધા મુલ્યો માટે $xcos\ \theta + y\ sin \theta =\,a$ એ વર્તૂળ $x^2 + y^2 = a^2$ ને સ્પર્શેં છે.
કેન્દ્ર $(2,3)$ અને ત્રિજ્યા $4$ વાળું વર્તુળ રેખા $x+y=3$ ને બિંદુઓ $P$ અને $Q$ માં છેદે છે. જો $P$ અને $Q$ પાસેના સ્પર્શકો બિંદુ $S(\alpha, \beta)$ માં છેદે, તો $4 \alpha-7 \beta=....................$
રેખા $3x - 4y = 0$ એ :
બિંદુ $(2, -3)$ માંથી વર્તૂળ $x^2 + y^2 + 4x - 6y - 12 = 0$ પર દોરેલા સ્પર્શકોની સ્પર્શ જીવાનું સમીકરણ શોધો.