Let the tangents at two points $A$ and $B$ on the circle $x ^{2}+ y ^{2}-4 x +3=0$ meet at origin $O (0,0)$. Then the area of the triangle of $OAB$ is.

  • [JEE MAIN 2022]
  • A

    $\frac{3 \sqrt{3}}{2}$

  • B

    $\frac{3 \sqrt{3}}{2}$

  • C

    $\frac{3}{2 \sqrt{3}}$

  • D

    $\frac{3}{4 \sqrt{3}}$

Similar Questions

Let the tangents at the points $A (4,-11)$ and $B (8,-5)$ on the circle $x^2+y^2-3 x+10 y-15=0$, intersect at the point $C$. Then the radius of the circle, whose centre is $C$ and the line joining $A$ and $B$ is its tangent, is equal to

  • [JEE MAIN 2023]

The equation of the normal to the circle ${x^2} + {y^2} - 2x = 0$ parallel to the line $x + 2y = 3$ is

Let the tangents drawn from the origin to the circle, $x^{2}+y^{2}-8 x-4 y+16=0$ touch it at the points $A$ and $B .$ The $(A B)^{2}$ is equal to

  • [JEE MAIN 2020]

Square of the length of the tangent drawn from the point $(\alpha ,\beta )$ to the circle $a{x^2} + a{y^2} = {r^2}$ is

The normal at the point $(3, 4)$ on a circle cuts the circle at the point $(-1, -2)$. Then the equation of the circle is