રેખા $ 5x + 12y + 8 = 0 $ ને લંબ હોય, તેવા વર્તૂળ $x^2 + y^2 - 22x - 4y + 25 = 0 $ ના સ્પર્શકનું સમીકરણ....
$12x - 5y + 8 = 0, 12x - 5y = 252$
$12x - 5y + 8 = 0, 12x - 5y + 252 = 0$
$12x - 5y = 0, 12x - 5y = 252$
એકપણ નહિ
વિધાન $(A)\ : \theta$ ના બધા મુલ્ય માટે રેખા $(x -3)\ cos\theta + (y - 3)\ sin\theta = 1$ એ વર્તૂળ $(x - 3)^2 + (y - 3)^2\,\,=1$ ને સ્પર્શેં છે.
કારણ $(R)$ : $\theta$ ના બધા મુલ્યો માટે $xcos\ \theta + y\ sin \theta =\,a$ એ વર્તૂળ $x^2 + y^2 = a^2$ ને સ્પર્શેં છે.
જો બિંદુ $(5, 3)$ માંથી વર્તૂળ $x^2 + y^2 + ky + 17 = 0$ પર દોરેલા સ્પર્શકની લંબાઈ $7$ હોય, તો $k = ………$
બિંદુ $(4, 5)$ માંથી વર્તૂળ પર સ્પર્શક દોરવામાં આવે છે. આ સ્પર્શકો અને ત્રિજયાઓ દ્વારા બનતા ચતુષ્કોણનું ક્ષેત્રફળ ................ $\mathrm{sq.\, units}$ માં મેળવો.
વર્તુળ $2 x ^2+2 y ^2-(1+ a ) x -(1- a ) y =0$ પર બિંદુ $P\left(\frac{1+a}{2}, \frac{1-a}{2}\right)$ માંથી દોરેલ બે ભિન્ન જીવાઓને દુભાગે તેવી $a^2$ની તમામ કિંમત નો ગણ $........$ છે.
જો વર્તૂળ $S = x^2 + y^2 + 2gx + 2fy + c = 0$ દ્વારા બિંદુ $P(x_1, y_1) $ આગળ બનતો ખૂણો $\theta$ હોય, તો....