माना प्रेक्षण $x _{ i }(1 \leq i \leq 10)$ समीकरणों $\sum_{ i =1}^{10}\left( x _{ i }-5\right)=10$ तथा $\sum_{ i =1}^{10}\left( x _{ i }-5\right)^{2}=40$ को संतुष्ट करते है। यदि $\mu$ तथा $\lambda$ प्रेक्षणों $x _{1}-3, x _{2}-3, \ldots, x _{10}-3$ के क्रमशः माध्य तथा प्रसरण है, तो क्रमित युग्म $(\mu, \lambda)$ बराबर है 

  • [JEE MAIN 2020]
  • A

    $(6, 6)$

  • B

    $(3, 6)$

  • C

    $(6, 3)$

  • D

    $(3, 3)$

Similar Questions

यदि आरोही क्रम में लिखी संख्याओं $3,5,7,2 k$, $12,16,21,24$ का माध्यिका के सापेक्ष माध्य विचलन 6 है, तो माध्यिका है

  • [JEE MAIN 2022]

यदि आंकडों $65,68,58,44,48,45,60, \alpha, \beta, 60$ जहाँ $\alpha>\beta$ है, के माध्य तथा प्रसरण क्रमशः $56$ तथा $66.2$ है, तो $\alpha^2+\beta^2$ बराबर है ................

  • [JEE MAIN 2024]

यदि $\sum_{i=1}^{9}\left(x_{i}-5\right)=9$ तथा $\sum_{i=1}^{9}\left(x_{i}-5\right)^{2}=45$ है, तो नौ प्रेक्षणों $x_{1}, x_{2}, \ldots . ., x_{9}$ का मानक विचलन है

  • [JEE MAIN 2018]

$\alpha$, $\beta$  तथा  $\gamma$  का प्रसरण $9$ है, तब $5$$\alpha$, $5$$\beta$, तथा $5$$\gamma$ का प्रसरण है

यदि संख्याओं $1,2,3, \ldots .,, n$ (जहाँ $n$ विषम है) का माध्य के सापेक्ष माध्य विचलन $\frac{5( n +1)}{ n }$ है तब $n$ बराबर होगा -

  • [JEE MAIN 2022]