माना प्रेक्षण $x _{ i }(1 \leq i \leq 10)$ समीकरणों $\sum_{ i =1}^{10}\left( x _{ i }-5\right)=10$ तथा $\sum_{ i =1}^{10}\left( x _{ i }-5\right)^{2}=40$ को संतुष्ट करते है। यदि $\mu$ तथा $\lambda$ प्रेक्षणों $x _{1}-3, x _{2}-3, \ldots, x _{10}-3$ के क्रमशः माध्य तथा प्रसरण है, तो क्रमित युग्म $(\mu, \lambda)$ बराबर है 

  • [JEE MAIN 2020]
  • A

    $(6, 6)$

  • B

    $(3, 6)$

  • C

    $(6, 3)$

  • D

    $(3, 3)$

Similar Questions

एक डिज़ाइन में बनाए गए वृत्तों के व्यास (मिमी में) नीचे दिए गए हैं। 

व्यास $33-36$ $37-40$ $41-44$ $45-48$ $49-52$
वृत्तों संख्या $15$ $17$ $21$ $22$ $25$

वृत्तों के व्यासों का मानक विचलन व माध्य व्यास ज्ञात कीजिए।

आठ प्रेक्षणों का माध्य तथा प्रसरण क्रमश : $9$ और $9.25$ हैं। यदि इनमें से छ: प्रेक्षण $6,7,10 , 12, 12$ और $13$ हैं, तो शेष दो प्रेक्षण ज्ञात कीजिए।

माना $10$ प्रेक्षणों $\mathrm{a}_1, \mathrm{a}_2, \ldots . \mathrm{a}_{10}$ के लिए $\sum_{\mathrm{k}=1}^{10} \mathrm{a}_{\mathrm{k}}=50$तथा $\sum_{\forall k < j} a_k \cdot a_j=1100$ है। तो $a_1, a_2, \ldots, a_{10}$ का मानक विचलन बराबर है :

  • [JEE MAIN 2024]

लघु विधि द्वारा माध्य, प्रसरण व मानक विचलन ज्ञात कीजिए।

ऊँचाई (सेमी में) $70-75$ $75-80$ $80-85$ $85-90$ $90-95$ $95-100$ $100-105$ $105-110$ $110-115$
बच्चों की
संख्या
$3$ $4$ $7$ $7$ $15$ $9$ $6$ $6$ $3$

निम्नलिखित बारंबारता बंटन के लिए माध्य व प्रसरण ज्ञात कीजिए।

वर्ग $0-10$ $10-20$ $20-30$ $30-40$ $40-50$
बारंबारता $5$ $8$ $15$ $16$ $6$