मान $9=\mathrm{x}_1 < \mathrm{x}_2 < \ldots<\mathrm{x}_7$ एक $A.P.$ में हैं, जिसका सर्वा अन्तर $\mathrm{d}$ है। यदि $\mathrm{x}_1, \mathrm{x}_2 \ldots, \mathrm{x}_7$ का मानक विचलन $4$ है तथा माध्य $\overline{\mathrm{x}}$ है, तो $\overline{\mathrm{x}}+\mathrm{x}_6$ बराबर है:
$18\left(1+\frac{1}{\sqrt{3}}\right)$
$34$
$2\left(9+\frac{8}{\sqrt{7}}\right)$
$25$
बीस प्रेक्षणों का माध्य तथा मानक विचलन क्रमश: $10$ तथा $2$ हैं। जाँच करने पर यह पाया गया कि प्रेक्षण $8$ गलत है। निम्न में से प्रत्येक का सही माध्य तथा मानक विचलन ज्ञात कीजिए यदि
गलत प्रेक्षण हटा दिया जाए।
$20$ प्रेक्षणों के माध्य तथा मानक विचलन क्रमश: $10$ तथा $2.5$ निकाले गये। यह पाया गया कि गलती से एक आंकड़ा $35$ की जगह $25$ लिया गया था। यदि सही आकड़ों का माध्य तथा मानक विचलन क्रमशः $\alpha$ तथा $\sqrt{\beta}$ हैं, तो $(\alpha, \beta)$ है
यदि $\sum_{i=1}^{9}\left(x_{i}-5\right)=9$ तथा $\sum_{i=1}^{9}\left(x_{i}-5\right)^{2}=45$ है, तो नौ प्रेक्षणों $x_{1}, x_{2}, \ldots . ., x_{9}$ का मानक विचलन है
सात प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $8$ तथा $16$ है। यदि इनमें से $5$ प्रेक्षण $2,4,10,12,14$ है, तो शेष दो प्रेक्षणों का गुणनफल है
आँकड़ों के एक समूह में $n$ प्रेक्षण : $x _{1}, x _{2}, \ldots, x _{ n }$ हैं। यदि $\sum_{ i =1}^{ n }\left( x _{ i }+1\right)^{2}=9 n$ तथा $\sum_{ i =1}^{ n }\left( x _{ i }-1\right)^{2}=5 n$ है, तो इन आँकड़ों का मानक विचलन है