Let the observations $\mathrm{x}_{\mathrm{i}}(1 \leq \mathrm{i} \leq 10)$ satisfy the equations, $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)=10$ and $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)^{2}=40$ If $\mu$ and $\lambda$ are the mean and the variance of the observations, $\mathrm{x}_{1}-3, \mathrm{x}_{2}-3, \ldots ., \mathrm{x}_{10}-3,$ then the ordered pair $(\mu, \lambda)$ is equal to :

  • [JEE MAIN 2020]
  • A

    $(6, 6)$

  • B

    $(3, 6)$

  • C

    $(6, 3)$

  • D

    $(3, 3)$

Similar Questions

If the mean of the frequency distribution

Class: $0-10$ $10-20$ $20-30$ $30-40$ $40-50$
Frequency $2$ $3$ $x$ $5$ $4$

is $28$ , then its variance is $........$.

  • [JEE MAIN 2023]

If the standard deviation of the numbers $ 2,3,a $ and $11$ is $3.5$  then which of the following is true ?

  • [JEE MAIN 2016]

If the mean and the variance of $6,4, a, 8, b, 12,10, 13$ are $9$ and $9.25$ respectively, then $a+b+a b$ is equal to :

  • [JEE MAIN 2025]

Let the mean of the data

$X$ $1$ $3$ $5$ $7$ $9$
$(f)$ $4$ $24$ $28$ $\alpha$ $8$

be $5.$ If $m$ and $\sigma^2$ are respectively the mean deviation about the mean and the variance of the data, then $\frac{3 \alpha}{m+\sigma^2}$ is equal to $..........$.

  • [JEE MAIN 2023]

If the data $x_1, x_2, ...., x_{10}$ is such that the mean of first four of these is $11$, the mean of the remaining six is $16$ and the sum of squares of all of these is $2,000$; then the standard deviation of this data is

  • [JEE MAIN 2019]