ધારો કે અવલોકનો  $\mathrm{x}_{\mathrm{i}}(1 \leq \mathrm{i} \leq 10)$ એ સમીકરણો  $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)=10$ અને  $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)^{2}=40$ નું સમાધાન કરે છે. જો  $\mu$ અને  $\lambda$ એ અનુક્રમે અવલોકનો $\mathrm{x}_{1}-3, \mathrm{x}_{2}-3, \ldots ., \mathrm{x}_{10}-3,$ નો મધ્યક અને વિચરણ હોય તો ક્રમયુક્ત જોડ $(\mu, \lambda)$ મેળવો.

  • [JEE MAIN 2020]
  • A

    $(6, 6)$

  • B

    $(3, 6)$

  • C

    $(6, 3)$

  • D

    $(3, 3)$

Similar Questions

જો $x_1,x_2,.........,x_{100}$ એ $100$ અવલોકનો એવા છે કે જેથી $\sum {{x_i} = 0,\,\sum\limits_{1 \leqslant i \leqslant j \leqslant 100} {\left| {{x_i}{x_j}} \right|} }  = 80000\,\& $ મધ્યકથી સરેરાશ વિચલન $5$ હોય તો પ્રમાણિત વિચલન મેળવો. 

આપેલ પ્રત્યેક માહિતી માટે મધ્યક અને વિચરણ શોધો : ત્રણના પ્રથમ $10$ ગુણિત

જો આપેલ આવૃતિ વિતરણનો મધ્યક અને વિચરણ અનુક્રમે $9$ અને$15.08$ છે તો $\alpha^2+\beta^2-\alpha \beta$ ની કિમંત મેળવો.

$x_i$ $2$ $4$ $6$ $8$ $10$ $12$ $14$ $16$
$f_i$ $4$ $4$ $\alpha$ $15$ $8$ $\beta$ $4$ $5$

  • [JEE MAIN 2023]

$10$ અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $20$ અને $8$ છે.ત્યાર બાદ,એવું જોવામાં આવ્યું કે એક અવલોકન $40$ ને બદલે ભૂલથી $50$ નોંધવામાં આવેલ હતું. તો સાચું વિચરણ $........$ છે.

  • [JEE MAIN 2023]

એક ધોરણના $50$ વિદ્યાર્થીઓ દ્વારા ત્રણ વિષયો ગણિત, ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ત્રમાં મેળવેલા ગુણનો મધ્યક અને પ્રમાણિત વિચલન નીચે પ્રમાણે છે :

વિષય

ગણિત  ભૌતિકશાસ્ત્ર

રસાયણશાસ્ત્ર

મધ્યક  $42$ $32$ $40.9$
પ્રમાણિત વિચલન  $12$ $15$ $20$

કયા વિષયમાં સૌથી વધુ ચલન અને કયા વિષયમાં સૌથી ઓછું ચલન છે ?