ધારો કે અવલોકનો  $\mathrm{x}_{\mathrm{i}}(1 \leq \mathrm{i} \leq 10)$ એ સમીકરણો  $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)=10$ અને  $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)^{2}=40$ નું સમાધાન કરે છે. જો  $\mu$ અને  $\lambda$ એ અનુક્રમે અવલોકનો $\mathrm{x}_{1}-3, \mathrm{x}_{2}-3, \ldots ., \mathrm{x}_{10}-3,$ નો મધ્યક અને વિચરણ હોય તો ક્રમયુક્ત જોડ $(\mu, \lambda)$ મેળવો.

  • [JEE MAIN 2020]
  • A

    $(6, 6)$

  • B

    $(3, 6)$

  • C

    $(6, 3)$

  • D

    $(3, 3)$

Similar Questions

જો બે $200$ અને $300$ અવલોકનો ધરાવતા સમૂહોનો મધ્યક અનુક્રમે $25, 10$ અને તેમનો $S.D.$ અનુક્રમે $3$ અને $4$ હોય તો બંને સમૂહોને ભેગા કરતાં $500$ અવલોકનો ધરાવતા નવા સમૂહનો વિચરણ મેળવો. 

ધારો કે $\mathrm{a}, \mathrm{b}, \mathrm{c} \in {N}$ અને $\mathrm{a}<\mathrm{b}<\mathrm{c}$. ધારો કે $5$ અવલોક્નો $9,25, \mathrm{a}, \mathrm{b}, \mathrm{c}$ ના મધ્યક, મધ્યક સાપેક્ષ સરેરાશ વિચલન અને વિચરણ અનુક્રમે $18,4$ અને $\frac{136}{5}$ છે. તો $2 \mathrm{a}+\mathrm{b}-\mathrm{c}=$............

  • [JEE MAIN 2024]

વિધાન $- 1$  : પ્રથમ $n$ યુગ્મ પ્રાકૃતિક સંખ્યાઓનું વિચરણ $\frac{{{n^2}\, - \,\,1}}{3}$છે.

વિધાન $- 2$  : પ્રથમ $n$  અયુગ્મ પ્રાકૃતિક સંખ્યાઓનો સરવાળો $n^2$  છે અને પ્રથમ  $n$  અયુગ્મ પ્રાકૃતિક સંખ્યાઓના વર્ગનો સરવાળો $\frac{{n(4{n^2}\, + \,\,1)}}{3}$છે.

$8$ અવલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $10$ અને $13.5$ છે જો તેમાંથી $6$ અવલોકનો $5,7,10,12,14,15,$ હોય તો બાકી રહેલા બીજા બે અવલોકનોનો ધન તફાવત ...........  થાય 

  • [JEE MAIN 2020]

 જો સંભાવના વિતરણ

વર્ગ: $0-10$ $10-20$ $20-30$ $30-40$ $40-50$
આવૃતિ $2$ $3$ $x$ $5$ $4$

નો મધ્યક $28$ હોય,તો તેનું વિચરણ $.........$ છે. 

  • [JEE MAIN 2023]