ધારો કે અવલોકનો $\mathrm{x}_{\mathrm{i}}(1 \leq \mathrm{i} \leq 10)$ એ સમીકરણો $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)=10$ અને $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)^{2}=40$ નું સમાધાન કરે છે. જો $\mu$ અને $\lambda$ એ અનુક્રમે અવલોકનો $\mathrm{x}_{1}-3, \mathrm{x}_{2}-3, \ldots ., \mathrm{x}_{10}-3,$ નો મધ્યક અને વિચરણ હોય તો ક્રમયુક્ત જોડ $(\mu, \lambda)$ મેળવો.
$(6, 6)$
$(3, 6)$
$(6, 3)$
$(3, 3)$
પ્રયોગના $5$ અલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $4 $ અને $5.2$ છે. જો આ અવલોકનો પૈકી ત્રણ $1, 2$ અને $6,$ હોય તો બાકીના અવલોકનો કયા હશે ?
ધારો કે વસ્તી $A $ એ $100 $ અવલોકનો $101, 102, ..... 200$ અને બીજી વસ્તી $B$ એ $100 $ અવલોકનો $151, 152, ...... 250 $ ધરાવે છે. જો $V_A $ અને $V_B$ એ અનુક્રમે બંને વસ્તીઓનું વિચરણ દર્શાવે તો $V_A / V_B$ શું થાય ?
વિતરણનો મધ્યક $4$ છે. જો તેના વિચરણનો ચલનાંક $58\% $ હોયતો વિતરણનું પ્રમાણિત વિચલન કેટલું થાય છે ?
અમુક માહિતી માટે મધ્યક અને પ્રમાણિત વિચલન આપેલ છે જે નીચે મુજબ છે
અવલોકનની સંખ્યા $=25,$ મધ્યક $=18.2$ અને પ્રમાણિત વિચલન $=3.25$
વધારામાં બીજા 15 અવલોકનો $x_{1}, x_{2}, \ldots, x_{15},$ ગણ પણ હાજર છે જેના માટે $\sum_{i=1}^{15} x_{i}=279$ અને $\sum_{i=1}^{15} x_{i}^{2}=5524$ છે તો બધા 40 અવલોકનનો પ્રમાણિત વિચલન મેળવો
જો પાંચ અવલોકનોના મધ્યક અને વિચરણ અનુક્રમે $\frac{24}{5}$ અને $\frac{194}{25}$ હોય તથા પ્રથમ ચાર અવલોકનોનું મધ્યક $\frac{7}{2}$ હોય, તો પ્રથમ ચાર અવલોકનોનું વિચરણ......................થાય.