ધારો કે અવલોકનો  $\mathrm{x}_{\mathrm{i}}(1 \leq \mathrm{i} \leq 10)$ એ સમીકરણો  $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)=10$ અને  $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)^{2}=40$ નું સમાધાન કરે છે. જો  $\mu$ અને  $\lambda$ એ અનુક્રમે અવલોકનો $\mathrm{x}_{1}-3, \mathrm{x}_{2}-3, \ldots ., \mathrm{x}_{10}-3,$ નો મધ્યક અને વિચરણ હોય તો ક્રમયુક્ત જોડ $(\mu, \lambda)$ મેળવો.

  • [JEE MAIN 2020]
  • A

    $(6, 6)$

  • B

    $(3, 6)$

  • C

    $(6, 3)$

  • D

    $(3, 3)$

Similar Questions

એક કસોટીમાં વિદ્યાર્થીઓએ મેળવેલ ગુણના મધ્યક તથા વિચરણ અનુક્રમે $10$ અને $4$ છે. ત્યાર બાદ, એક વિદ્યાર્થીના ગુણ $8$ થી વધારીને $12$ કરવામાં આવે છે. જો ગુણનો નવો મધ્યક $10.2$ હોય, તો તેમનું નવું વિચરણ $...............$ થશે.

  • [JEE MAIN 2023]

ધારોકે વર્ગ $A$ના $100$ વિદ્યાર્થીઓના ગુણનો  મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $40$ અને $\alpha( > 0)$ છે તથા વર્ગ $B$ના $n$ વિદ્યાર્થીઓના ગુણનો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $55$ અને $30-\alpha$ છે.જો $100+n$ના સંયુક્ત વર્ગના ગુણોનો મધ્યક અને વિચરણ અનુક્રમે $50$ અને $350$ હોય,તો વર્ગ $A$ અને વર્ગ $B$ના વિચરણનો સરવાળો $...........$ છે.

  • [JEE MAIN 2023]

જો $100$ વસ્તુઓના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $50$ અને $4$ હોય તો બધી વસ્તુઓનો સરવાળો મેળવો અને બધી વસ્તુઓના વર્ગોનો સરવાળો મળવો 

જો $n$ અવલોકનો $x_1, x_2, x_3.........x_n$ ના મધ્યક $\bar x$ અને વિચરણ $\sigma ^2$ હોય, તો સાબિત કરી કે અવલોકનો $a x_{1}, a x_{2}, a x_{3}, \ldots ., a x_{n}$  ના મધ્યક અને વિચરણ અનુક્રમે $a \bar{x}$ અને $a^{2} \sigma^{2}$ છે, $(a \neq 0)$. 

નીચે આપેલ માહિતી માટે પ્રમાણિત વિચલન શોધો : 

${x_i}$ $3$ $8$ $13$ $18$ $25$
${f_i}$ $7$ $10$ $15$ $10$ $6$