एक डिज़ाइन में बनाए गए वृत्तों के व्यास (मिमी में) नीचे दिए गए हैं।
व्यास | $33-36$ | $37-40$ | $41-44$ | $45-48$ | $49-52$ |
वृत्तों संख्या | $15$ | $17$ | $21$ | $22$ | $25$ |
वृत्तों के व्यासों का मानक विचलन व माध्य व्यास ज्ञात कीजिए।
Class Interval |
Frequency ${f_i}$ |
Mid=point ${x_i}$ |
${y_i} = \frac{{{x_i} - 42.5}}{4}$ | ${f_i}^2$ | ${f_i}{y_i}$ | ${f_i}{y_i}^2$ |
$33-36$ | $15$ | $34.5$ | $-2$ | $4$ | $-30$ | $60$ |
$37-40$ | $17$ | $38.5$ | $-1$ | $1$ | $-17$ | $17$ |
$41-44$ | $21$ | $42.5$ | $0$ | $0$ | $0$ | $0$ |
$45-48$ | $22$ | $46.5$ | $1$ | $1$ | $22$ | $22$ |
$49-52$ | $25$ | $50.5$ | $2$ | $4$ | $50$ | $100$ |
$100$ | $25$ | $199$ |
here, $N=100,$ $h=4$
Let the assumed mean, $A,$ be $42.5$
Mean, $\bar x = A + \frac{{\sum\limits_{i = 1}^5 {{f_i}{y_i}} }}{N} \times h$
$ = 42.5 + \frac{{25}}{{100}} \times 4 = 43.5$
Variance, $\left( {{\sigma ^2}} \right) = \frac{{{h^2}}}{{{N^2}}}\left[ {N\sum\limits_{i = 1}^5 {{f_i}{y_i}^2 - {{\left( {\sum\limits_{i = 1}^5 {{f_i}{y_i}} } \right)}^2}} } \right]$
$=\frac{16}{10000}\left[100 \times 199-(25)^{2}\right]$
$=\frac{16}{10000}[19900-625]$
$=\frac{16}{10000} \times 19275$
$=30.84$
$\therefore$ Standard deviation $(\sigma)=5.55$
माना प्रेक्षणों के दो समुच्चय $\mathrm{X}=\{11,12,13, \ldots \ldots$, $40,41\}$ तथा $\mathrm{Y}=\{61,62,63, \ldots ., 90,91\}$ है। यदि इनके माध्य क्रमशः $\bar{x}$ तथा $\bar{y}$ हैं तथा $\mathrm{X} \cup \mathrm{Y}$ में सभी प्रेक्षणों का प्रसरण $\sigma^2$ है तो $\left|\overline{\mathrm{x}}+\overline{\mathrm{y}}-\sigma^2\right|$ बराबर है_____________.
माना $X=\{x \in N : 1 \leq x \leq 17\}$ और $Y=\{a x+b: x \in X$ और $a, b \in R , a>0\}$ यदि $Y$ के अवयव का माध्य और प्रसरण क्रमश $17$ और $216$ है तो $a+b$ बराबर है
यदि आँकड़ों का प्रत्येक प्रेक्षण, जिसका प्रसरण ${\sigma ^2}$ है, $\lambda$ से बढ़ाया जाता है, तब नये समूह का प्रसरण है....
आठ प्रेक्षणों का माध्य तथा प्रसरण क्रमश : $9$ और $9.25$ हैं। यदि इनमें से छ: प्रेक्षण $6,7,10 , 12, 12$ और $13$ हैं, तो शेष दो प्रेक्षण ज्ञात कीजिए।