माना कि$z$ एक सम्मिश्र संख्या है, तो समीकरण ${z^4} + z + 2 = 0$निम्न प्रकार का मूल नहीं रख सकता

  • A

    $|z|\, < 1$

  • B

    $|z|\, = 1$

  • C

    $|z|\, > 1$

  • D

    इनमें से कोई नहीं

Similar Questions

यदि  ${z_1}$ तथा ${z_2}$दो अशून्य सम्मिश्र संख्याएँ ऐसी हों कि $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|$ हो, तब कोणांक $({z_1}) - $कोणांक $({z_2})$ का मान है                            

  • [AIEEE 2005]

$arg\left( {\frac{{3 + i}}{{2 - i}} + \frac{{3 - i}}{{2 + i}}} \right)$ =

यदि $|z|\, = 1$ तथा $\omega  = \frac{{z - 1}}{{z + 1}}$ (जहाँ $z \ne  - 1)$, तब ${\mathop{\rm Re}\nolimits} (\omega )$का मान होगा

  • [IIT 2003]

यदि कोणांक $(z) = \theta $, तो कोणांक $\,(\overline z ) = $        

यदि $z$ एक ऐसी सम्मिश्र संख्या है जिसका मापांक $1$ है तथा कोणांक $\theta$, तब कोणांक $\left(\frac{1+z}{1+\bar{z}}\right)$ बराबर है

  • [JEE MAIN 2013]