यदि कोणांक $(z) = \theta $, तो कोणांक $\,(\overline z ) = $
$\theta $
$ - \theta $
$\pi - \theta $
$\theta - \pi $
यदि $\frac{3+ i \sin \theta}{4- i \cos \theta}, \theta \in[0,2 \pi]$, एक वास्तविक संख्या है, तो $\sin \theta+i \cos \theta$ का एक कोणांक (argument) है
$(z + a)(\bar z + a)$ तुल्य है (जहाँ $a$ वास्तविक है)
यदि $a >0$ तथा $z =\frac{(1+ i )^{2}}{ a - i }$ का परिमाण (magnitude) $\sqrt{\frac{2}{5}}$ है, तो $\overline{ z }$ बराबर है
यदि ${z_1}$ तथा ${z_2}$दो अशून्य सम्मिश्र संख्याएँ ऐसी हों कि $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|$ हो, तब कोणांक $({z_1}) - $कोणांक $({z_2})$ का मान है
$0$ का कोणांक है