यदि $z$ एक ऐसी सम्मिश्र संख्या है जिसका मापांक $1$ है तथा कोणांक $\theta$, तब कोणांक $\left(\frac{1+z}{1+\bar{z}}\right)$ बराबर है

  • [JEE MAIN 2013]
  • A

    $ - \theta $

  • B

    $\frac{\pi }{2} - \theta $

  • C

    $\;\theta $

  • D

    $\;\pi - \theta $

Similar Questions

मानाकि $z_k=\cos \left(\frac{2 k \pi}{10}\right)+ i \sin \left(\frac{2 k \pi}{10}\right) ; k=1,2, \ldots 9$

List $I$ List $II$
$P.$ प्रत्येक $z _{ k }$ के लिए एक ऐसा $z _{ j }$ है जिसके लिये $z _{ k } \cdot z _{ j }=1$ $1.$ सत्य
$Q.$ $\{1,2, \ldots, 9\}$ में एक ऐसा $k$ है कि $z _1 . z = z _{ k }$ का कोई हल $z$ सम्मिश्र संख्याओं (complex numbers) में नहीं है $2.$ असत्य
$R.$ $\frac{\left|1-z_1\right|\left|1-z_2\right| \ldots . . .\left|1-z_9\right|}{10}$ का मान है- $3.$ $1$
$S.$ $1-\sum_{ k =1}^9 \cos \left(\frac{2 k \pi}{10}\right)$ का मान है- $4.$ $2$

Codes: $ \quad P \quad Q \quad R \quad S$

  • [IIT 2014]

माना कि $z$ एक शून्येतर काल्पनिक भाग (non-zero imaginary part) वाली सम्मिश्र संख्या (complex number) है। यदि $\frac{2+3 z+4 z^2}{2-3 z+4 z^2}$ एक वास्तविक संख्या (real number) है, तब $|z|^2$ का मान. . . . .है।

  • [IIT 2022]

$|2z - 1| + |3z - 2|$का न्यूनतम मान होगा

समीकरण $|1-i|^{x}=2^{x}$ के शून्येत्तर पूर्णाक मूलों की संख्या ज्ञात कीजिए।

$\left| {\frac{1}{2}({z_1} + {z_2}) + \sqrt {{z_1}{z_2}} } \right| + \left| {\frac{1}{2}({z_1} + {z_2}) - \sqrt {{z_1}{z_2}} } \right|$ =