Let $z$ be a complex number, then the equation ${z^4} + z + 2 = 0$ cannot have a root, such that
$|z|\, < 1$
$|z|\, = 1$
$|z|\, > 1$
None of these
Let $\alpha=8-14 i , A=\left\{ z \in C : \frac{\alpha z -\bar{\alpha} \overline{ z }}{ z ^2-(\overline{ z })^2-112 i }=1\right\}$ and $B =\{ z \in C :| z +3 i |=4\}$ Then $\sum_{z \in A \cap B}(\operatorname{Re} z-\operatorname{Im} z)$ is equal to $...............$.
Find the modulus and argument of the complex numbers:
$\frac{1+i}{1-i}$
If ${z_1}{\rm{ and }}{z_2}$ be complex numbers such that ${z_1} \ne {z_2}$ and $|{z_1}|\, = \,|{z_2}|$. If ${z_1}$ has positive real part and ${z_2}$ has negative imaginary part, then $\frac{{({z_1} + {z_2})}}{{({z_1} - {z_2})}}$may be
If$z = \frac{{1 - i\sqrt 3 }}{{1 + i\sqrt 3 }},$then $arg(z) = $ ............. $^\circ$
If $z_1, z_2 $ are any two complex numbers, then $|{z_1} + \sqrt {z_1^2 - z_2^2} |$ $ + |{z_1} - \sqrt {z_1^2 - z_2^2} |$ is equal to