माना $a_1, a_2, a_3, \ldots$ वर्धमान धनात्मक संख्याओं की एक $G.P.$ है। माना इसके छठे और आठवें पदों का योग $2$ है तथा इसके तीसरे और पाँचवें पदों का गुणनफल $\frac{1}{9}$ है। तो $6\left(a_2+a_4\right)\left(a_4+a_6\right)$ बराबर है।
$2 \sqrt{2}$
$2$
$3 \sqrt{3}$
$3$
ऐसी दो संख्याएँ ज्ञात कीजिए जिनको $3$ तथा $81$ के बीच रखने पर प्राप्त अनुक्रम एक गुणोत्तर श्रेणी बन जाय।
यदि $a,\;b,\;c$ समान्तर श्रेणी में, $b,\;c,\;d$ गुणोत्तर श्रेणी में तथा $c,\;d,\;e$ हरात्मक श्रेणी में हैं, तो $a,\;c,\;e$ होंगे
दिखाइए कि एक गुणोत्तर श्रेणी के प्रथम $n$ पदों के योगफल तथा $(n+1)$ वें पद से $(2 n)$ वें पद
तक के पदों के योगफल का अनुपात $\frac{1}{r^{n}}$ है।
उस अनन्त गुणोत्तर श्रेणी का, जिसका सार्वअनुपात $r$ हो, योग ज्ञात किया जा सकता है
किसी गुणोत्तर श्रेणी में $S , n$ पदों का योग, $P$ उनका गुणनफल तथा $R$ उनके व्युत्क्रमों का योग हो तो सिद्ध कीजिए कि $P ^{2} R ^{n}= S ^{n}$.