किसी गुणोत्तर श्रेणी में $S , n$ पदों का योग, $P$ उनका गुणनफल तथा $R$ उनके व्युत्क्रमों का योग हो तो सिद्ध कीजिए कि $P ^{2} R ^{n}= S ^{n}$.
Let the $G.P.$ be $a, a r, a r^{2}, a r^{3} \ldots . . a r^{n-1}$
According to the given information,
$S=\frac{a\left(r^{n}-1\right)}{r-1}$
$P=a^{n} \times r^{1+2+\ldots+n-1}$
$=a^{n} r^{\frac{n(n-1)}{2}}$ [ $\because $ Sum of first $4n$ natural number is $n \frac{(n+1)}{2}$ ]
$R=\frac{1}{a}+\frac{1}{a r}+\ldots \ldots+\frac{1}{a r^{n-1}}$
$=\frac{r^{n-1}+r^{n-2}+\ldots . r+1}{a r^{n-1}}$
$=\frac{1\left(r^{n}-1\right)}{(r-1)} \times \frac{1}{a r^{n-1}}$ [ $\because $ $1, r, \ldots \ldots r^{n-1}$ forms a $G.P.$ ]
$=\frac{r^{n}-1}{a r^{n-1}(r-1)}$
$\therefore P^{2} R^{n}=a^{2 n} r^{n(n-1)} \frac{\left(r^{n}-1\right)^{n}}{a^{n} r^{n(n-1)}(r-1)^{n}}$
$=\frac{a^{n}\left(r^{n}-1\right)^{n}}{(r-1)^{n}}$
$=\left[\frac{a\left(r^{n}-1\right)}{(r-1)}\right]^{n}$
$=S^{n}$
Hence, $P^{2} R^{n}=S^{n}$
श्रेणी $1 + \frac{2}{x} + \frac{4}{{{x^2}}} + \frac{8}{{{x^3}}} + ....\infty $ का योग एक नियत संख्या है, तब
$2.\mathop {357}\limits^{ \bullet \,\, \bullet \,\, \bullet } = $
वृत्त $C_0$ की त्रिज्या $1$ है। प्रत्येक पूर्णांक $n \geq 1$ के लिए $C_n$ एक ऐसा वृत्त है जिसका क्षेत्रफल उस वर्ग के क्षेत्रफल के बराबर है जो $C_{n-1}$ में अंतर्गत किया गया है। ऐसी स्थिति में दी गई अनंत श्रेणी $\sum_{i=0}^{\infty}\left(C_i\right.$ का क्षेत्रफल $)$ का मान होगा:
यदि $a,\;b,\;c$ गुणोत्तर श्रेणी के $p$ वें, $q$ वें तथा $r$ वें पद हैं, तब ${\left( {\frac{c}{b}} \right)^p}{\left( {\frac{b}{a}} \right)^r}{\left( {\frac{a}{c}} \right)^q}$ का मान है
यदि $x,{G_1},{G_2},\;y$ किसी गुणोत्तर श्रेणी के क्रमागत पद हैं, तो ${G_1}\,{G_2}$ का मान होगा