दिखाइए कि एक गुणोत्तर श्रेणी के प्रथम $n$ पदों के योगफल तथा $(n+1)$ वें पद से $(2 n)$ वें पद
तक के पदों के योगफल का अनुपात $\frac{1}{r^{n}}$ है।
Let $a$ be the first term and $r$ be the common ratio of the $G.P.$
Sum of first $n$ terms $=\frac{a\left(1-r^{n}\right)}{(1-r)}$
Since there are $n$ terms from $(n+1)^{\text {th }}$ to $(2 n)^{\text {th }}$ term,
Sum of terms from $(n+1)^{t h}$ to $(2 n)^{th}$ term
$S_{n}=\frac{a_{n+1}\left(1-r^{n}\right)}{1-r}$
$a^{n+1}=a r^{n+1-1}=a r^{n}$
Thus, required ratio $=\frac{a\left(1-r^{n}\right)}{(1-r)} \times \frac{(1-r)}{a r^{n}\left(1-r^{n}\right)}=\frac{1}{r^{n}}$
Thus, the ratio of the sum of first $n$ terms of a $G.P.$ to the sum of terms from term is $\frac{1}{r^{n}}$
माना $a$ तथा $b$ दो भिन्न धनात्मक वास्तविक संख्याएं हैं। माना एक $GP$, जिसका पहला पद $\mathrm{a}$ तथा तीसरा पद $\mathrm{b}$ है, का $11$ वाँ पद, एक अन्य $GP$, जिसका पहला $\mathrm{a}$ तथा पाचवाँ पद $\mathrm{b}$ है, के $\mathrm{p}$ वें पद के बराबर है। तो $\mathrm{p}$ बराबर है
एक व्यक्ति अपने चार मित्रों को पत्र लिखता है। वह प्रत्येक को उसकी नकल करके चार दूसरे व्यक्तियों को भेजने का निर्देश देता है, तथा उनसे यह भी करने को कहता हैं कि प्रत्येक पत्र प्राप्त करने वाला व्यक्ति इस शंखला को जारी रखे। यह कल्पना करके कि शृखला न टूटे तो $8$ वें पत्रों के समूह भेजे जाने तक कितना डाक खर्च होगा जबकि एक पत्र का डाक खर्च $50$ पैसे है।
गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।
$1,-a, a^{2},-a^{3}, \ldots n$ पदों तक (यदि $a \neq-1)$
समीकरण $1 + a + {a^2} + {a^3} + ....... + {a^x}$ $ = (1 + a)(1 + {a^2})(1 + {a^4})$ के लिए $x$ का मान है
एक गुणोत्तर श्रेढ़ी के पहले चार पदों का योग $\frac{65}{12}$ है तथा उनके व्युत्क्रमों का योग $\frac{65}{18}$ है। यदि इसके पहले तीन पदों का गुणनफल 1 हो और तीसरा पद $\alpha$ हो, तो $2 \alpha$ बराबर है ........ |