Let $a _1, a _2, a _3, \ldots$ be a $G.P.$ of increasing positive numbers. Let the sum of its $6^{\text {th }}$ and $8^{\text {th }}$ terms be $2$ and the product of its $3^{\text {rd }}$ and $5^{\text {th }}$ terms be $\frac{1}{9}$. Then $6\left( a _2+\right.$ $\left.a_4\right)\left(a_4+a_6\right)$ is equal to

  • [JEE MAIN 2023]
  • A

    $2 \sqrt{2}$

  • B

    $2$

  • C

    $3 \sqrt{3}$

  • D

    $3$

Similar Questions

The first term of a $G.P.$ is $1 .$ The sum of the third term and fifth term is $90 .$ Find the common ratio of $G.P.$

The number $111..............1$ ($91$ times) is a

If $3 + 3\alpha + 3{\alpha ^2} + .........\infty = \frac{{45}}{8}$, then the value of $\alpha $ will be

If $x,\;y,\;z$ are in $G.P.$ and ${a^x} = {b^y} = {c^z}$, then

  • [IIT 1968]

if $x = \,\frac{4}{3}\, - \,\frac{{4x}}{9}\, + \,\,\frac{{4{x^2}}}{{27}}\, - \,\,.....\,\infty $ , then $x$ is equal to