माना $\mathrm{f}^1(\mathrm{x})=\frac{3 \mathrm{x}+2}{2 \mathrm{x}+3}, \mathrm{x} \in \mathrm{R}-\left\{\frac{-3}{2}\right\}$ है $\mathrm{n} \geq 2$ के लिए $\mathrm{f}^{\mathrm{n}}(\mathrm{x})=\mathrm{f}^1 0 \mathrm{f}^{\mathrm{n}-1}(\mathrm{x})$ द्वारा परिभाषित कीजिए। यदि $\mathrm{f}^5(\mathrm{x})=\frac{\mathrm{ax}+\mathrm{b}}{\mathrm{bx}+\mathrm{a}}, \operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$, है, तो $\mathrm{a}+\mathrm{b}$ बराबर है_________. 

  • [JEE MAIN 2023]
  • A

    $3124$

  • B

    $3123$

  • C

    $3126$

  • D

    $3125$

Similar Questions

यदि $f(x+y)=f(x) f(y)$ तथा $\sum_{x=1}^{\infty} f(x)=2, x, y \in N$, हैं, जहाँ $N$, सभी प्राकृत संख्याओं का समुच्चय है, तो $\frac{f(4)}{f(2)}$ का मान है

  • [JEE MAIN 2020]

माना $\mathrm{S}=\{1,2,3,4,5,6\}$ है तो ऐसे ऐकेकी फलनों $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{P}(\mathrm{S})$, जहाँ $\mathrm{P}(\mathrm{S})$ समुच्चय $\mathrm{S}$ का घात समुच्चय $\mathrm{f}(\mathrm{n}) \subset \mathrm{f}(\mathrm{m})$ है जब भी $\mathrm{n}<\mathrm{m}$ है, की संख्या है_______. 

  • [JEE MAIN 2023]

माना $f(x) = {x^2} + x + \sin x - \cos x + \log (1 + |x|)$ अन्तराल $[0, 1]$ में परिभाषित है। $f(x)$ के अन्तराल $[-1, 1]$ में विषम प्रसार $(odd\, extensions)$ है

फलन $f(x)=\log _{\sqrt{5}}(3+\cos \left(\frac{3 \pi}{4}+x\right)+\cos \left(\frac{\pi}{4}+x\right)+\cos \left(\frac{\pi}{4}-x\right)$

$-\cos \left(\frac{3 \pi}{4}-x\right))$ का परिसर है

  • [JEE MAIN 2021]

माना $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{\mathrm{n}}+\lambda, \lambda \in \mathbb{R}, \mathrm{n} \in \mathbb{N}$ और $\mathrm{f}(4)=133, \mathrm{f}(5)=255$ है। तो $(\mathrm{f}(3)-\mathrm{f}(2))$ के सभी धनात्मक पूर्णांक भाजकों का योग है -

  • [JEE MAIN 2023]