Let $f ^1( x )=\frac{3 x +2}{2 x +3}, x \in R -\left\{\frac{-3}{2}\right\}$ For $n \geq 2$, define $f ^{ n }( x )= f ^1 0 f ^{ n -1}( x )$. If $f ^5( x )=\frac{ ax + b }{ bx + a }, \operatorname{gcd}( a , b )=1$, then $a + b$ is equal to $............$.
$3124$
$3123$
$3126$
$3125$
Suppose that a function $f: R \rightarrow R$ satisfies $f(x+y)=f(x) f(y)$ for all $x, y \in R$ and $f(1)=3 .$ If $\sum \limits_{i=1}^{n} f(i)=363,$ then $n$ is equal to
Let $f(\theta)$ is distance of the line $( \sqrt {\sin \theta } )x + ( \sqrt {\cos \theta })y +1 = 0$ from origin. Then the range of $f(\theta)$ is -
If $f(x + ay,\;x - ay) = axy$, then $f(x,\;y)$ is equal to
Suppose $f$ is a function satisfying $f ( x + y )= f ( x )+ f ( y )$ for all $x , y \in N$ and $f (1)=\frac{1}{5}$. If $\sum \limits_{n=1}^m \frac{f(n)}{n(n+1)(n+2)}=\frac{1}{12}$, then $m$ is equal to $...............$.
If $f(x)$ and $g(x)$ are functions satisfying $f(g(x))$ = $x^3 + 3x^2 + 3x + 4$ $f(x)$ = $log^3x + 3$, then slope of the tangent to the curve $y = g(x)$ at $x = \ -1$ is