माना $\mathrm{S}=\{1,2,3,4,5,6\}$ है तो ऐसे ऐकेकी फलनों $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{P}(\mathrm{S})$, जहाँ $\mathrm{P}(\mathrm{S})$ समुच्चय $\mathrm{S}$ का घात समुच्चय $\mathrm{f}(\mathrm{n}) \subset \mathrm{f}(\mathrm{m})$ है जब भी $\mathrm{n}<\mathrm{m}$ है, की संख्या है_______.
$3241$
$3242$
$3243$
$3240$
माना $2{\sin ^2}x + 3\sin x - 2 > 0$ और ${x^2} - x - 2 < 0$ ($x$ रेडियन में है), तब $x$ निम्न अन्तराल में होगा
उन बिन्दुओं, जहाँ वक्र
$f(x)=e^{8 x}-e^{6 x}-3 e^{4 x}-e^{2 x}+1, x \in \mathbb{R}, x$-अक्ष को
काटता है, की संख्या है_______
फलनों $f :\{1,2,3,4\} \rightarrow\{1,2,3,4,5,6\}$ जिनके लिए $f(1)+f(2)=f(3)$, है, की कुल संख्या है :
$f(x)=\frac{1}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$ द्वारा परिभाषित फलन का प्रांत है
मान लें कि $A$ सभी वास्तविक संख्याओं $x$ के समुच्चय को इस प्रकार निरूपित करता है कि $x^3-[x]^3=(x-[x])^3$ जहॉ $[x], x$ से छोटा या उसके बराबर महत्तम पूर्णांक हैं,तब