यदि $f(x+y)=f(x) f(y)$ तथा $\sum_{x=1}^{\infty} f(x)=2, x, y \in N$, हैं, जहाँ $N$, सभी प्राकृत संख्याओं का समुच्चय है, तो $\frac{f(4)}{f(2)}$ का मान है

  • [JEE MAIN 2020]
  • A

    $\frac{1}{9}$

  • B

    $\frac{4}{9}$

  • C

    $\frac{1}{3}$

  • D

    $\frac{2}{3}$

Similar Questions

माना $f ( x )= ax ^2+ bx + c$ है, जिसके लिए $f (1)=3, f (-2)=\lambda$ तथा $f (3)=4$. हैं। यदि $f (0)+ f (1)+ f (-2)+ f (3)=14$ है, तो $\lambda$ बराबर है

  • [JEE MAIN 2022]

माना $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{\mathrm{n}}+\lambda, \lambda \in \mathbb{R}, \mathrm{n} \in \mathbb{N}$ और $\mathrm{f}(4)=133, \mathrm{f}(5)=255$ है। तो $(\mathrm{f}(3)-\mathrm{f}(2))$ के सभी धनात्मक पूर्णांक भाजकों का योग है -

  • [JEE MAIN 2023]

यदि फलन $f(x)=\log _e\left(4 x^2+11 x+6\right)+$ $\sin ^{-1}(4 x+3)+\cos ^{-1}\left(\frac{10 x+6}{3}\right)$ का प्रांत $(\alpha, \beta]$ है, तो $36|\alpha+\beta|$ बराबर है :

  • [JEE MAIN 2023]

यदि फलन

$\log _e\left(\frac{6 x^2+5 x+1}{2 x-1}\right)+\cos ^{-1}\left(\frac{2 x^2-3 x+4}{3 x-5}\right)$ का

प्रांत $(\alpha, \beta) \cup(\gamma, \delta]$ है, तो $18\left(\alpha^2+\beta^2+\gamma^2+\delta^2\right)$  बराबर है

  • [JEE MAIN 2023]

फलन $f(x)=x+\frac{1}{8} \sin (2 \pi x), 0 \leq x \leq 1$ का आरेख नीचे दर्शाया गया है. यदि $f_1(x)=f(x)$ और $n \geq$ 1 के लिए $f_{n+1}(x)=f\left(f_n(x)\right)$.

तब निम्न कथनों:

$I$ अनंत $x \in[0,1]$ संभव है यदि $\lim _{n \rightarrow \infty} f_n(x)=0$.

$II$. अनंत $x \in[0,1]$ संभब है यदि $\lim _{n \rightarrow \infty} f_n(x)=\frac{1}{2}$.

$III$ अनंत $x \in[0,1]$ संभव है यदि $\lim _{n \rightarrow \infty} f_n(x)=1$.

$IV$. अन्त $x \in[0,1]$ सभव है यदि $\lim _{n \rightarrow \infty} f_n(x)$ का अस्तित्व नहीं है.

में से कौन से कथन सत्य है

  • [KVPY 2016]