माना भुजा $a$ के एक वर्ग की संलग्र भुजाओं की प्रवणताएं $m _1, \quad m _2$ इस प्रकार है कि $a ^2+11 a +3\left( m _2^2+ m _2^2\right)=220$ है। यदि वर्ग का एक शीर्ष $(10(\cos \alpha-\sin \alpha), 10(\sin \alpha+\cos \alpha)), \alpha \in\left(0, \frac{\pi}{2}\right)$ है तथा एक विकर्ण का समीकरण $(\cos \alpha-\sin \alpha) x +(\sin \alpha+\cos \alpha) y =10$ है, तो $72\left(\sin ^4 \alpha+\cos ^4 \alpha\right)+a^2-3 a+13$ बराबर है।

  • [JEE MAIN 2022]
  • A

    $119$

  • B

    $128$

  • C

    $145$

  • D

    $155$

Similar Questions

माना $A (1,-1)$ तथा $B (0,2)$ दो बिन्दु हैं। यदि एक बिंदु $P \left( x ^{\prime}, y ^{\prime}\right)$ इस प्रकार है कि $\triangle PAB$ का क्षेत्रफल $=5$ वर्ग इकाई है तथा यह रेखा $3 x + y -4 \lambda=0$ पर स्थित है, तो $\lambda$ का एक मान है 

  • [JEE MAIN 2020]

रेखा $2x + 3y = 12$, $x$-अक्ष को बिन्दु $A$ तथा $y$-अक्ष को बिन्दु $B$ पर मिलती है। बिन्दु $(5, 5)$ से जाने वाली रेखा $AB$ पर लम्ब है एवं यह रेखा $x$-अक्ष, $y$-अक्ष तथा दी गई रेखा को क्रमश: $C, \,D$ व $E$ पर मिलती है। यदि $O$ मूल बिन्दु हो, तो $OCEB$ का क्षेत्रफल है

  • [IIT 1976]

यदि त्रिभुज $ABC$ के शीर्षों के निर्देशांक क्रमश: $(-1, 6)$,$(-3,-9)$, तथा $(5, -8)$ हों तो $C$ से गुजरने वाली माध्यिका का समीकरण होगा  

माना एक त्रिभुज, रेखाओं $L _1: 2 x +5 y =10$; $L _2:-4 x +3 y =12$ द्वारा परिबद्ध है तथा रेखा $L _3$ जो बिन्दु $P (2,3)$ से गुजरती है रेखा $L _2$ को $A$ पर तथा रेखा $L _1$ को $B$ पर काटती है। यदि बिन्दु $P$, रेखाखण्ड $AB$ को आंतरिक रूप से $1: 3$ के अनुपात में विभाजित करता है, तो त्रिभुज का क्षेत्रफल के बराबर है

  • [JEE MAIN 2022]

एक समद्विबाहु त्रिभुज की दो बराबर भुजाओं के समीकरण $7x - y + 3 = 0$  तथा $x + y - 3 = 0$ हैं और तीसरी भुजा बिन्दु $(1, -10)$ से गुजरती है। तीसरी भुजा का समीकरण है

  • [IIT 1984]