Let $m_{1}, m_{2}$ be the slopes of two adjacent sides of a square of side a such that $a^{2}+11 a+3\left(m_{2}^{2}+m_{2}^{2}\right)=220$. If one vertex of the square is $(10(\cos \alpha-\sin \alpha), 10(\sin \alpha+\cos \alpha))$, where $\alpha \in\left(0, \frac{\pi}{2}\right)$ and the equation of one diagonal is $(\cos \alpha-\sin \alpha) x +(\sin \alpha+\cos \alpha) y =10$, then $72 \left(\sin ^{4} \alpha+\cos ^{4} \alpha\right)+a^{2}-3 a+13$ is equal to.
$119$
$128$
$145$
$155$
Show that the path of a moving point such that its distances from two lines $3 x-2 y=5$ and $3 x+2 y=5$ are equal is a straight line.
The line $3x + 2y = 24$ meets $y$-axis at $A$ and $x$-axis at $B$. The perpendicular bisector of $AB$ meets the line through $(0, - 1)$ parallel to $x$-axis at $C$. The area of the triangle $ABC$ is ............... $\mathrm{sq. \, units}$
The line $\frac{x}{a} + \frac{y}{b} = 1$ moves in such a way that $\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{2{c^2}}}$, where $a, b, c \in R_0$ and $c$ is constant, then locus of the foot of the perpendicular from the origin on the given line is -
Let $m, n$ be real numbers such that $0 \leq m \leq \sqrt{3}$ and $-\sqrt{3} \leq n \leq 0$. The minimum possible area of the region of the plane consisting of points $(x, y)$ satisfying in inequalities $y \geq 0, y-3 \leq m x$, $y -3 \leq nx$, is
The equation of perpendicular bisectors of the sides $AB$ and $AC$ of a triangle $ABC$ are $x - y + 5 = 0$ and $x + 2y = 0$ respectively. If the point $A$ is $(1,\; - \;2)$, then the equation of line $BC$ is