यदि त्रिभुज $ABC$ के शीर्षों के निर्देशांक क्रमश: $(-1, 6)$,$(-3,-9)$, तथा $(5, -8)$ हों तो $C$ से गुजरने वाली माध्यिका का समीकरण होगा
$13x - 14y - 47 = 0$
$13x - 14y + 47 = 0$
$13x + 14y + 47 = 0$
$13x + 14y - 47 = 0$
एक त्रिभुज का परिकेंद्र मूल बिन्दु पर है तथा उसका केन्द्रक, बिन्दुओं $\left(a^{2}+1, a^{2}+1\right)$ तथा $(2 a,-2 a)$, $a \neq 0$ को मिलाने वाले रेखाखंड का मध्य बिंदु है, तो किसी $a$ के लिए इस त्रिभुज का लंब केन्द्र जिस रेखा पर स्थित है, वह है
एक सरल रेखा, जो एक अचर बिन्दु $(2,3)$ से होकर जाती है, निर्देशांक अक्षों को दो विभिन्न बिन्दुओं $P$ तथा $Q$ पर प्रतिच्छेद करती है। यदि $O$ मूल बिन्दु है तथा आयत $O P R Q$ को पूरा किया जाता है तो $R$ का बिन्दुपथ है
एक बिन्दु इस प्रकार गति करता है कि इसकी बिन्दु $(4,\,0)$ से दूरी सरल रेखा $x = 16$ से दूरी की आधी रहती है, तो बिन्दु का बिन्दुपथ है
माना $A (1,-1)$ तथा $B (0,2)$ दो बिन्दु हैं। यदि एक बिंदु $P \left( x ^{\prime}, y ^{\prime}\right)$ इस प्रकार है कि $\triangle PAB$ का क्षेत्रफल $=5$ वर्ग इकाई है तथा यह रेखा $3 x + y -4 \lambda=0$ पर स्थित है, तो $\lambda$ का एक मान है
उस समान्तर चतुभुज का क्षेत्रफल, जिसकी भुजाएँ $x\cos \alpha + y\sin \alpha = p$, $x\cos \alpha + y\sin \alpha = q,\,\,$ $x\cos \beta + y\sin \beta = r$ व $x\cos \beta + y\sin \beta = s$ हैं, होगा