અહી $\mathrm{n}$ એ અયુગ્મ પ્રાકૃતિક સંખ્યા છે કે જેથી $1,2,3,4, \ldots, \mathrm{n}$ નું વિચરણ $14 $ થાય છે તો $\mathrm{n}$ ની કિમંત મેળવો.
$12$
$13$
$23$
$26$
નીચે આપેલ માહિતી માટે મધયક અને વિચરણ મેળવો
$\begin{array}{|l|l|l|l|l|} \hline x & 1 \leq x<3 & 3 \leq x<5 & 5 \leq x<7 & 7 \leq x<10 \\ \hline f & 6 & 4 & 5 & 1 \\ \hline \end{array}$
ધારો કે પ્રયોગ $A $ ના $100$ અવલોકન $ 101,102, . . .,200 $ અને પ્રયોગ $B $ ના $100$ અવલોકન $151,152, . . .,250$ છે જો $V_A$ અને $V_B$ એ આપેલ પ્રયોગ ના વિચરણ છે તો $V_A / V_B$ મેળવો.
ધારોકે $8$ સંખ્યાઓ $x, y, 10,12,6,12,4,8$ ના મધ્યક અને વિયરણ અનુક્રમે $9$ અને $9.25$ છે. જો $x > y$ હોય, તો $3 x-2 y=.........$.
પ્રથમ $n$ પ્રાકૃતિક સંખ્યાઓનું વિચરણ શોધો.
ધારે કે કોઈ વર્ગમાં $7$ વિદ્યાર્થીઓ છે. આ વિદ્યાર્થીઓના ગણીત વિષયની પરીક્ષાના ગુણોની સરેેારાશ $62$ છે. તથા વિચરણ $20$ છે. જે $50$ કરતાં ઓછા ગુણ મેળવે તો વિદ્યાર્થી આ પરિક્ષામાં નાપાસ માનવામાં આવે, તો ખરાબમાં ખરાબ સ્થિતિમાં નાપાસ પનાર વિદ્યાર્થીઓની સંખ્યા...........છે.