અહી $\mathrm{n}$ એ અયુગ્મ પ્રાકૃતિક સંખ્યા છે કે જેથી $1,2,3,4, \ldots, \mathrm{n}$ નું વિચરણ $14 $ થાય છે તો $\mathrm{n}$ ની કિમંત મેળવો.
$12$
$13$
$23$
$26$
$3$ ખામી વાળી $12$ ચીજેના એક જથ્થામાથી યાદસ્છિક રીતે $5$ ચીજોનો એક નિદર્શ લેવામાં આવે છે. ધારોકે યાદચ્છિક ચલ $X$ એ નિર્દશ ની ખામી વાળી ચીજોની સંખ્યા દર્શાવે છે. ધારોકે નિર્દશમાં ની ચીજો પુરવણીરહિત એક પછી એક લેવામાં આવે છે. જે $X$ નું વિચરણ $\frac{m}{n}$ હોય, તો જ્યાં ગુ.સા.આ. $(m,\left.n\right)=1$, તો $n-m=$ ..............
નીચે આપેલ આવૃત્તિ વિતરણનું વિચરણ શોધો.
$class$ |
$0 - 2$ |
$2 - 4$ |
$4 - 6$ |
$6 - 8$ |
$8 - 10$ |
$10 - 12$ |
$f_i$ |
$2$ |
$7$ |
$12$ |
$19$ |
$9$ |
$ 1$ |
નીચે આપેલ માહિતી પરથી બતાવો કે $A$ અને $B$ માંથી કયા સમૂહમાં વધારે ચલન છે?
ગુણ |
$10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ |
સમૂહ $A$ | $9$ | $17$ | $32$ | $33$ | $40$ | $10$ | $9$ |
સમૂહ $B$ | $10$ | $20$ | $30$ | $25$ | $43$ | $15$ | $7$ |
જો સંખ્યાઓ $ 2,3,a $અને $11$ નું પ્રમાણિત વિચલન $3.5$ હોય ,તો નીચેનામાંથી કયું સત્ય છે?
$50 $ મધ્યક વાળા $10$ અવલોકનોના વિચલનના વર્ગનો સરવાળો $250 $ હોય તો વિચરણનો ચલનાંક કેટલો થાય ?