$50 $ મધ્યક વાળા $10$ અવલોકનોના વિચલનના વર્ગનો સરવાળો $250 $ હોય તો વિચરણનો ચલનાંક કેટલો થાય ?
$0.1$
$0.4$
$0.5$
આપેલ પૈકી એક પણ નહિં
વિતરણનો મધ્યક $4$ છે. જો તેના વિચરણનો ચલનાંક $58\% $ હોયતો વિતરણનું પ્રમાણિત વિચલન કેટલું થાય છે ?
જો સંભાવના વિતરણ
વર્ગ: | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ |
આવૃતિ | $2$ | $3$ | $x$ | $5$ | $4$ |
નો મધ્યક $28$ હોય,તો તેનું વિચરણ $.........$ છે.
ધારો કે અવલોકનો $\mathrm{x}_{\mathrm{i}}(1 \leq \mathrm{i} \leq 10)$ એ સમીકરણો $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)=10$ અને $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)^{2}=40$ નું સમાધાન કરે છે. જો $\mu$ અને $\lambda$ એ અનુક્રમે અવલોકનો $\mathrm{x}_{1}-3, \mathrm{x}_{2}-3, \ldots ., \mathrm{x}_{10}-3,$ નો મધ્યક અને વિચરણ હોય તો ક્રમયુક્ત જોડ $(\mu, \lambda)$ મેળવો.
એક $x$ પરના પ્રયોગના $15$ અવલોકન છે કે જેથી $\sum {x^2} = 2830$, $\sum x = 170$.જો આપેલ અવલોકનમાંથી અવલોકન $20$ ખોટુ છે અને તેના બદલામાં અવલોકન $30$ લેવામાં આવે છે તો નવી માહિતીનું વિચરણ મેળવો.
ધારોકે છ સંખ્યાઓ $a_1, a_2, a_3, a_4, a_5, a_6$ સમાંતર શ્રેણીમાં છે અને $a_1+a_3=10$. જો આ છ સંખ્યાઓ નું મધ્યક $\frac{19}{2}$ હોય અને તેમનું વિયરણ $\sigma^2$ હોય, તો $8 \sigma^2=........$