Let $\mathrm{n}$ be an odd natural number such that the variance of $1,2,3,4, \ldots, \mathrm{n}$ is $14 .$ Then $\mathrm{n}$ is equal to ..... .

  • [JEE MAIN 2021]
  • A

    $12$

  • B

    $13$

  • C

    $23$

  • D

    $26$

Similar Questions

Given that $\bar{x}$ is the mean and $\sigma^{2}$ is the variance of $n$ observations $x_{1}, x_{2}, \ldots, x_{n}$ Prove that the mean and variance of the observations $a x_{1}, a x_{2}, a x_{3}, \ldots ., a x_{n}$ are $a \bar{x}$ and $a^{2} \sigma^{2},$ respectively, $(a \neq 0)$

If each observation of a raw data whose variance is ${\sigma ^2}$, is multiplied by $\lambda$, then the variance of the new set is

The mean and $S.D.$ of $1, 2, 3, 4, 5, 6$ is

If $\sum \limits_{i=1}^{n}\left(x_{i}-a\right)=n$ and $\sum \limits_{i=1}^{n}\left(x_{i}-a\right)^{2}=n a,(n, a>1)$ then the standard deviation of $n$ observations $x _{1}, x _{2}, \ldots, x _{ n }$ is

  • [JEE MAIN 2020]

Consider the statistics of two sets of observations as follows :

  Size Mean Variance
Observation $I$ $10$ $2$ $2$
Observation $II$ $n$ $3$ $1$

If the variance of the combined set of these two observations is $\frac{17}{9},$ then the value of $n$ is equal to ..... .

  • [JEE MAIN 2021]