यदि ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .... + {C_n}{x^n}$, तो ${C_0} + 2{C_1} + 3{C_2} + .... + (n + 1){C_n}$ का मान होगा  

  • [IIT 1971]
  • A

    $(n + 2){2^{n - 1}}$

  • B

    $(n + 1){2^n}$

  • C

    $(n + 1){2^{n - 1}}$

  • D

    $(n + 2){2^n}$

Similar Questions

यदि $x + y = 1$, तब $\sum\limits_{r = 0}^n {{r^2}{\,^n}{C_r}{x^r}{y^{n - r}}} $ बराबर है

माना $\left(\mathrm{a}+\mathrm{bx}+\mathrm{cx}^2\right)^{10}=\sum_{\mathrm{i}=0}^{20} \mathrm{p}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}, \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{N}$ है। यदि $\mathrm{p}_1=20$ तथा $\mathrm{p}_2=210$ हैं, तो $2(\mathrm{a}+\mathrm{b}+\mathrm{c})$ बराबर है :

  • [JEE MAIN 2023]

यदि ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .... + {C_n}{x^n}$, तब ${C_0}{C_2} + {C_1}{C_3} + {C_2}{C_4} + {C_{n - 2}}{C_n}$ का मान होगा

$\sum \limits_{\substack{i, j=0 \\ i \neq j}}^{ n }{ }^n C_i{ }^n C_j$ बराबर है :

  • [JEE MAIN 2022]

यदि $1+\left(2+{ }^{49} C _1+{ }^{49} C _2+\ldots \ldots+{ }^{49} C _{49}\right)\left({ }^{50} C _2+\right.$ $\left.{ }^{50} C _4+\ldots . .+{ }^{50} C _{50}\right)=2^{ n } . m$ है, जहाँ $m$ एक विषम संख्या है, तो $n + m$ बराबर है $..........$

  • [JEE MAIN 2022]