Let $m, n \in N$ and $\operatorname{gcd}(2, n)=1$. If $30\left(\begin{array}{l}30 \\ 0\end{array}\right)+29\left(\begin{array}{l}30 \\ 1\end{array}\right)+\ldots+2\left(\begin{array}{l}30 \\ 28\end{array}\right)+1\left(\begin{array}{l}30 \\ 29\end{array}\right)= n .2^{ m }$ then $n + m$ is equal to (Here $\left.\left(\begin{array}{l} n \\ k \end{array}\right)={ }^{ n } C _{ k }\right)$

  • [JEE MAIN 2021]
  • A

    $45$

  • B

    $56$

  • C

    $42$

  • D

    $36$

Similar Questions

If ${\sum\limits_{i = 1}^{20} {\left( {\frac{{{}^{20}{C_{i - 1}}}}{{{}^{20}{C_i} + {}^{20}{C_{i - 1}}}}} \right)} ^3}\, = \frac{k}{{21}}$, then $k$ equals

  • [JEE MAIN 2019]

If $1+\left(2+{ }^{49} C _{1}+{ }^{49} C _{2}+\ldots .+{ }^{49} C _{49}\right)\left({ }^{50} C _{2}+{ }^{50} C _{4}+\right.$ $\ldots . .+{ }^{50} C _{ so }$ ) is equal to $2^{ n } . m$, where $m$ is odd, then $n$ $+m$ is equal to.

  • [JEE MAIN 2022]

If ${(1 + x)^{15}} = {C_0} + {C_1}x + {C_2}{x^2} + ...... + {C_{15}}{x^{15}},$ then ${C_2} + 2{C_3} + 3{C_4} + .... + 14{C_{15}} = $

  • [IIT 1966]

${C_0} - {C_1} + {C_2} - {C_3} + ..... + {( - 1)^n}{C_n}$ is equal to

If $\frac{{ }^{11} C_1}{2}+\frac{{ }^{11} C_2}{3}+\ldots . .+\frac{{ }^{11} C_9}{10}=\frac{n}{m}$ with $\operatorname{gcd}(n, m)=1$, then $n+m$ is equal to

  • [JEE MAIN 2024]