ધારોકે $f$ એ $R$ પર વ્યાખ્યાયિત કોઈ વિધેય છે અને તે, શરત $|f(x)-f(y)| \leq\left|(x-y)^{2}\right|, \forall \,(x, y) \in R$ નું સમાધાન કરે છે. જો $f(0) = 1$ તો
$f(x)$ એ $R$ માં કોઈપણ મૂલ્ય ધારણ કરે છે.
$f(x)< 0, \forall \,x \in R$
$f( x )=0, \forall \, x \in R$
$f( x )>0, \forall \, x \in R$
વિધેયો $f(x)$ અને $g(x)$ છે કે જેથી $f(x) + \int\limits_0^x {g(t)dt = 2\,\sin \,x\, - \,\frac{\pi }{2}} $ અને $f'(x).g (x) = cos^2\,x$ હોય તો અંતરાલ $(0,3 \pi$) પર સમીકરણ $f(x) + g(x) = 0$ ના ઉકેલની સંખ્યા મેળવો.
કઈ વાસ્તવિક સંખ્યા $K$ માટે સમીકરણ $2x^3 + 3x + k = 0$ ના બે વાસ્તવિક બીજ $ [0, 1]$ અંતરાલમાં હોય ?
જો $f $ અને $g$ એ $ [0,1] $ પર વિકલનીય વિધેયો હોય તથા $f\left( 0 \right) = 2 = g\left( 1 \right)\;,\;\;g\left( 0 \right) = 0,$ અને $f\left( 1 \right) = 6,$તો કોઇ $c \in \left] {0,1} \right[$ માટે
જો $f$ એ વિકલીનીય વિધેય હોય કે જેથી $f(2x + 1) = f(1 -2x)$ $\forall \,\,x \in R$ તથા $f(2) = f(5) = f(10)$ આપેેેલ હોય તો સમીકરણ $f'(x) = 0$ જ્યા $x \in \left( { - 5,10} \right)$ ના બિજો ઓછામાઓછા કેટલા મળે ?
વિધેય $f(x) = {x^2} - 4$ એ . . . . અંતરાલમાં રોલના પ્રમેય નું પાલન કરે છે .