જો $f $ અને $g$ એ $ [0,1] $ પર વિકલનીય વિધેયો હોય તથા $f\left( 0 \right) = 2 = g\left( 1 \right)\;,\;\;g\left( 0 \right) = 0,$ અને $f\left( 1 \right) = 6,$તો કોઇ $c \in \left] {0,1} \right[$ માટે
$f'\left( c \right) = g'\left( c \right)$
$f'\left( c \right) = 2g'\left( c \right)$
$2f'\left( c \right) = g'\left( c \right)$
$2f'\left( c \right) = 3g'\left( c \right)$
$a = 1$ અને $b = 3$ લઈ વિધેય $f(x)=x^{3}-5 x^{2}-3 x$ માટે $[a, b]$ પર મધ્યકમાન પ્રમેય ચકાસો. $f^{\prime}(c)=0$ થાય તેવા તમામ $c \in(1,3)$ શોધો.
વિધેય $f(x) = 2{x^3} + b{x^2} + cx,\,x\, \in \,\left[ { - 1,1} \right]$ એ $x = \frac{1}{2}$ આગળ રોલના પ્રમેયનું પાલન કરે છે તો $(2b+c)$ મેળવો.
મધ્યક પ્રમેય મુજબ, $f(b) - f(a) = (b - a)f'(c)$ જો $a = 4$, $b = 9$ અને $f(x) = \sqrt x $ તો $c$ ની કિમત મેળવો.
જો વિધેય $f(x) =2x^3 + bx^2 + cx, x \in [-1, 1],$ એ બિંદુ $x = \frac {1}{2}$ આગળ રોલના પ્રમેયનું પાલન કરે તો $2b+ c=$
જો $f(x) = (x-4)(x-5)(x-6)(x-7)$ તો