Let $f$ be any function defined on $R$ and let it satisfy the condition
$|f( x )-f( y )| \leq\left|( x - y )^{2}\right|, \forall( x , y ) \in R$ If $f(0)=1,$ then
$f(x)$ can take any value in $R$
$f(x)< 0, \forall \,x \in R$
$f( x )=0, \forall \, x \in R$
$f( x )>0, \forall \, x \in R$
If the functions $f ( x )=\frac{ x ^3}{3}+2 bx +\frac{a x^2}{2}$ and $g(x)=\frac{x^3}{3}+a x+b x^2, a \neq 2 b$ have a common extreme point, then $a+2 b+7$ is equal to
If the equation
${a_n}{x^{n - 1}} + \,{a_{n - 1}}{x^{n - 1}} + \,......\, + \,{a_1}x = 0,\,{a_1} \ne 0,n\, \geqslant \,2,$
has a positive root $x= \alpha ,$ then the equation
$n{a_n}{x^{n - 1}} + \,(n - 1){a_{n - 1}}{x^{n - 1}} + \,......\, + \,{a_1} = 0$
has a positive root which is
Suppose that $f (0) = - 3$ and $f ' (x) \le 5$ for all values of $x$. Then the largest value which $f (2)$ can attain is
A value of $c$ for which the conclusion of mean value the theorem holds for the function $f(x) = log{_e}x$ on the interval $[1, 3]$ is
If $f(x) = \cos x,0 \le x \le {\pi \over 2}$, then the real number $ ‘c’ $ of the mean value theorem is