$\mathrm{A}$ એ $3 \times 3$ કક્ષાનો ચોરસ શ્રેણિક હોય, તો $|\mathrm{k A}|$ $=$ ........
$A$ is a square matrix of order $3 \times 3$
Let $A=\left[\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right]$
Then, $k A=\left[\begin{array}{lll}k a_{1} & k b_{1} & k c_{1} \\ k a_{2} & k b_{2} & k c_{2} \\ k a_{3} & k b_{3} & k c_{3}\end{array}\right]$
$\therefore|k A|=\left|\begin{array}{lll}k a_{1} & k b_{1} & k c_{1} \\ k a_{2} & k b_{2} & k c_{2} \\ k a_{3} & k b_{3} & k c_{3}\end{array}\right|$
$=k^{3}\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$ (Taking out common factors $k$ from each row)
$=k^{3}|A|$
$\therefore|k A|=k^{3}|A|$
Hence, the correct answer is $C$.
ધારો કે $D = \left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right|$ અને $D' = \left| {\,\begin{array}{*{20}{c}}{{a_1} + p{b_1}}&{{b_1} + q{c_1}}&{{c_1} + r{a_1}}\\{{a_2} + p{b_2}}&{{b_2} + q{c_2}}&{{c_2} + r{a_2}}\\{{a_3} + p{b_3}}&{{b_3} + q{c_3}}&{{c_3} + r{a_3}}\end{array}\,} \right|$, તો . . .
જો $a,b,c$ અને $d$ એ સંકર સંખ્યા હોય , તો નિશ્રાયક $\Delta = \left| {\,\begin{array}{*{20}{c}}2&{a + b + c + d}&{ab + cd}\\{a + b + c + d}&{2(a + b)(c + d)}&{ab(c + d) + cd(a + b)}\\{ab + cd}&{ab(c + d) + cd(a + d)}&{2abcd}\end{array}} \right|$ એ. . . .. પર આધારિત છે.
$\lambda $ ની . . . . કિમત માટે સમીકરણની સંહતિ $2x - y - z = 12,$ $x - 2y + z = - 4,$ $x + y + \lambda z = 4$ ને એકપણ ઉકેલ શકય નથી.
જો રેખીય સમીકરણો $x - 4y + 7z = g,\,3y - 5z = h, \,-\,2x + 5y - 9z = k$ એ સુસંગત હોય તો . . .
અંતરાલ $ - \frac{\pi }{4} \le x \le \frac{\pi }{4}$ માટે $\left| {\,\begin{array}{*{20}{c}}{\sin x}&{\cos x}&{\cos x}\\{\cos x}&{\sin x}&{\cos x}\\{\cos x}&{\cos x}&{\sin x}\end{array}\,} \right| = 0$ ના ભિન્ન વાસ્તવિક બીજની સંખ્યા મેળવો.