જો $a,b,c$ અને $d$ એ સંકર સંખ્યા હોય , તો નિશ્રાયક $\Delta = \left| {\,\begin{array}{*{20}{c}}2&{a + b + c + d}&{ab + cd}\\{a + b + c + d}&{2(a + b)(c + d)}&{ab(c + d) + cd(a + b)}\\{ab + cd}&{ab(c + d) + cd(a + d)}&{2abcd}\end{array}} \right|$ એ. . . .. પર આધારિત છે.
$a, b, c$ અને $d $ પર આધારિત
$a,b,c$અને $d $ પર આધારિત નથી
$a,c$ પર આધારિત છે અને $b,d$ પર આધારિત નથી
એકપણ નહી.
જો $S$ એ $k$ એ બધીજ વાસ્તવિક કિમંતો નો ગણ છે કે જેથી રેખાઓની સહંતિ $x +y + z = 2$ ; $2x +y - z = 3$ ; $3x + 2y + kz = 4$ એ એકાકી ઉકેલ ધરાવે છે તો $S$ એ . . . .
$\left| {\,\begin{array}{*{20}{c}}x&4&{y + z}\\y&4&{z + x}\\z&4&{x + y}\end{array}\,} \right| = $
જો ${a_1},{a_2},{a_3}.....{a_n}....$ એ સમગુણોતર શ્રેણીમાં હોય તો $\left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}}\\{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}\end{array}\,} \right|$ ની કિમંત મેળવો.
$a$ અને $b$ ની કઈ કિમંતો માટે આપેલ સમીકરણ સંહતીઓ $2 x+3 y+6 z=8$ ; $x+2 y+a z=5$ ; $3 x+5 y+9 z=b$ નો બીજગણ ખાલી ગણ થાય.
જો $\alpha, \beta, \gamma$ એ સમીકરણ $x ^{3}+ ax ^{2}+ bx + c =0,( a , b , c \in R$ અને $a , b \neq 0)$ ના બીજ છે અને સમીકરણો ($u,v,w$ ના ચલમાં) $\alpha u+\beta v+\gamma w=0, \beta u+\gamma v+\alpha w=0$ $\gamma u +\alpha v +\beta w =0$ એ શૂન્યતર ઉકેલ ધરાવે છે તો $\frac{a^{2}}{b}$ ની કિમંત મેળવો.