Let $\mathrm{A}$ be a square matrix of order $3 \times 3$ , then $|\mathrm{k A}|$ is equal to
$A$ is a square matrix of order $3 \times 3$
Let $A=\left[\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right]$
Then, $k A=\left[\begin{array}{lll}k a_{1} & k b_{1} & k c_{1} \\ k a_{2} & k b_{2} & k c_{2} \\ k a_{3} & k b_{3} & k c_{3}\end{array}\right]$
$\therefore|k A|=\left|\begin{array}{lll}k a_{1} & k b_{1} & k c_{1} \\ k a_{2} & k b_{2} & k c_{2} \\ k a_{3} & k b_{3} & k c_{3}\end{array}\right|$
$=k^{3}\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$ (Taking out common factors $k$ from each row)
$=k^{3}|A|$
$\therefore|k A|=k^{3}|A|$
Hence, the correct answer is $C$.
The determinant $\left| {\,\begin{array}{*{20}{c}}{4 + {x^2}}&{ - 6}&{ - 2}\\{ - 6}&{9 + {x^2}}&3\\{ - 2}&3&{1 + {x^2}}\end{array}\,} \right|$ is not divisible by
If ${a^2} + {b^2} + {c^2} + ab + bc + ca \leq 0\,\forall a,\,b,\,c\, \in \,R$ , then the value of determinant $\left| {\begin{array}{*{20}{c}}
{{{(a + b + c)}^2}}&{{a^2} + {b^2}}&1 \\
1&{{{(b + c + 2)}^2}}&{{b^2} + {c^2}} \\
{{c^2} + {a^2}}&1&{{{(c + a + 2)}^2}}
\end{array}} \right|$
If $S$ is the set of distinct values of $'b'$ for which the following system of linear equations $x + y + z = 1;x + ay + z = 1;ax + by + z = 0$ has no solution , then $S$ is :
Let $A = \left[ {\begin{array}{*{20}{c}}5&{5\alpha }&\alpha \\0&\alpha &{5\alpha }\\0&0&5\end{array}} \right]$, If ${\left| A \right|^2} = 25$, then $\left| \alpha \right|$ equals