જો $z$ સંકર સંખ્યા છે કે જેથી $\left|\frac{z-i}{z+2 i}\right|=1$ અને $|z|=\frac{5}{2} \cdot$ હોય તો $|z+3 i|$ મેળવો.
$\sqrt{10}$
$2 \sqrt{3}$
$\frac{7}{2}$
$\frac{15}{4}$
અસમતા $|z - 4|\, < \,|\,z - 2|$ એ . . . ભાગ દર્શાવે છે .
ધારો કે $\alpha=8-14 i, A=\left\{z \in C : \frac{\alpha z-\bar{\alpha} \bar{z}}{z^2-(\bar{z})^2-112 i}=1\right\}$ અને $B=[z \in C :|z+3 i|=4]$.તો $\sum_{z \in A \cap B}(\operatorname{Re} z-\operatorname{Im} z)=............$
જો $|z_1|=1, \, |z_2| =2, \,|z_3|=3$ અને $|9z_1z_2 + 4z_1z_3+z_2z_3| =12$ હોય તો $|z_1+z_2+z_3|$ ની કિમત મેળવો
અનુબદ્વ સંકર સંખ્યા જો $\frac{1}{{i - 1}}$ હોય ,તો સંકર સંખ્યા મેળવો.
$\left| {(1 + i)\frac{{(2 + i)}}{{(3 + i)}}} \right| = $