माना $z$ एक ऐसी सम्मिश्र संख्या है, कि $\left|\frac{ z - i }{ z +2 i }\right|=1$ है तथा $|z|=\frac{5}{2}$ है, तो $|z+3 i|$ का मान है
$\sqrt{10}$
$2 \sqrt{3}$
$\frac{7}{2}$
$\frac{15}{4}$
यदि $|1-i|^x=2^x$ के हलों की संख्या $\alpha$ है तथा $\beta=\left(\frac{|\mathrm{z}|}{\arg (\mathrm{z})}\right)$ है, जहाँ $\mathrm{z}=\frac{\pi}{4}(1+\mathrm{i})^4\left(\frac{1-\sqrt{\pi} \mathrm{i}}{\sqrt{\pi}+\mathrm{i}}+\frac{\sqrt{\pi}-\mathrm{i}}{1+\sqrt{\pi} \mathrm{i}}\right), \mathrm{i}=\sqrt{-1}$ है, तो रेखा $4 x-3 y=7$ से बिंदु $(\alpha, \beta)$ की दूरी है................
माना कि$z$ एक सम्मिश्र संख्या है, तो समीकरण ${z^4} + z + 2 = 0$निम्न प्रकार का मूल नहीं रख सकता
यदि $\frac{{2{z_1}}}{{3{z_2}}}$ पूर्णतया अधिकल्पित संख्या हो, तब $\left| {\frac{{{z_1} - {z_2}}}{{{z_1} + {z_2}}}} \right|$का मान है
यदि ${z_1},{z_2}$एवं ${z_3}$तीन सम्मिश्र संख्याऐं इस प्रकार हैं कि $|{z_1}|\, = \,|{z_2}|\, = \,|{z_3}|\, = $$\left| {\frac{1}{{{z_1}}} + \frac{1}{{{z_2}}} + \frac{1}{{{z_3}}}} \right| = 1\,,$ तब${\rm{ }}|{z_1} + {z_2} + {z_3}|$ का मान है
यदि $Z$ तथा $W$ दो ऐसी सम्मिश्र संख्याएँ है कि $| ZW |=1$ तथा $\arg ( z )-\arg ( w )=\frac{\pi}{2}$, तो