Let $z$ be complex number such that $\left|\frac{z-i}{z+2 i}\right|=1$ and $|z|=\frac{5}{2} \cdot$ Then the value of $|z+3 i|$ is
$\sqrt{10}$
$2 \sqrt{3}$
$\frac{7}{2}$
$\frac{15}{4}$
Let $z_1 = 6 + i$ and $z_2 = 4 -3i$. Let $z$ be a complex number such that $arg\ \left( {\frac{{z - {z_1}}}{{{z_2} - z}}} \right) = \frac{\pi }{2}$, then $z$ satisfies -
If $arg\,(z) = \theta $, then $arg\,(\overline z ) = $
Given $z$ is a complex number such that $|z| < 2,$ then the maximum value of $|iz + 6 -8i|$ is equal to-
If $z_1, z_2 $ are any two complex numbers, then $|{z_1} + \sqrt {z_1^2 - z_2^2} |$ $ + |{z_1} - \sqrt {z_1^2 - z_2^2} |$ is equal to
If ${z_1}$ and ${z_2}$ are two complex numbers, then $|{z_1} - {z_2}|$ is