Let $z$ be complex number such that $\left|\frac{z-i}{z+2 i}\right|=1$ and $|z|=\frac{5}{2} \cdot$ Then the value of $|z+3 i|$ is
$\sqrt{10}$
$2 \sqrt{3}$
$\frac{7}{2}$
$\frac{15}{4}$
Let $z$ be a complex number (not lying on $X$-axis) of maximum modulus such that $\left| {z + \frac{1}{z}} \right| = 1$. Then
Let $z _{1}$ and $z _{2}$ be two complex numbers such that $\overline{ z }_{1}=i \overline{ z }_{2}$ and $\arg \left(\frac{ z _{1}}{\overline{ z }_{2}}\right)=\pi$. Then
If complex numbers $(x -2y) + i(3x -y)$ and $(2x -y) + i(x -y + 6)$ are conjugates of each other, then $|x + iy|$ is $(x,y \in R)$
If $|{z_1}| = |{z_2}| = .......... = |{z_n}| = 1,$ then the value of $|{z_1} + {z_2} + {z_3} + ............. + {z_n}|$=
Let $S=\left\{Z \in C: \bar{z}=i\left(z^2+\operatorname{Re}(\bar{z})\right)\right\}$. Then $\sum_{z \in S}|z|^2$ is equal to