$ \bar x , M$ અને $\sigma^2$ એ $n$ અવલોકનો $x_1 , x_2,...,x_n$ અને $d_i\, = - x_i - a, i\, = 1, 2, .... , n$, જ્યાં $a$ એ કોઈ પણ સંખ્યા હોય તે માટે અનુક્રમે મધ્યક બહુલક અને વિચરણ છે
વિધાન $I$: $d_1, d_2,.....d_n$ નો વિચરણ $\sigma^2$ થાય
વિધાન $II$ : $d_1 , d_2, .... d_n$ નો મધ્યક અને બહુલક અનુક્રમે $-\bar x -a$ અને $- M - a$ છે
વિધાન $I$ અને વિધાન $II$ બંને ખોટા છે
વિધાન $I$ અને વિધાન $II$ બંને સાચા છે
વિધાન $I$ સાચું અને વિધાન $II$ ખોટું છે
વિધાન $I$ ખોટું અને વિધાન $II$ સાચું છે
જો $5$ અવલોકનો $x_1 ,x_2 ,x_3 ,x_4 ,x_5$ નો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $10$ અને $3$ હોય તો $6$ અવલોકનો $x_1 ,x_2 ,.....,x_5$ અને $-50$ નો વિચરણ ......... થાય
નીચે આપેલ માહિતી માટે વિચરણ અને પ્રમાણિત વિચલન શોધો :
${x_i}$ | $4$ | $8$ | $11$ | $17$ | $20$ | $24$ | $32$ |
${f_i}$ | $3$ | $5$ | $9$ | $5$ | $4$ | $3$ | $1$ |
જો $x_1,x_2,.........,x_{100}$ એ $100$ અવલોકનો એવા છે કે જેથી $\sum {{x_i} = 0,\,\sum\limits_{1 \leqslant i \leqslant j \leqslant 100} {\left| {{x_i}{x_j}} \right|} } = 80000\,\& $ મધ્યકથી સરેરાશ વિચલન $5$ હોય તો પ્રમાણિત વિચલન મેળવો.
નીચે આપેલ આવૃત્તિ-વિતરણ માટે મધ્યક, વિચરણ અને પ્રમાણિત વિચલન શોધો.
વર્ગ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
આવૃત્તિ |
$3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |
જો $n$ અવલોકનો ${x_1}\;,\;{x_2}\;,\;.\;.\;.\;,{x_n}$ છે અને તેમાંનો સમાંતર મધ્યક $\bar x$ છે અને ${\sigma ^2}$ એ વિચરણ છે.
વિધાન $1$ : $2{x_1}\;,2\;{x_2}\;,\;.\;.\;.\;,2{x_n}$ નું વિચરણ $4{\sigma ^2}$ છે.
વિધાન $2$: $2{x_1}\;,2\;{x_2}\;,\;.\;.\;.\;,2{x_n}$ નો સમાંતર મધ્યક $4\bar x$ છે.