જો $\sum\limits_{i\, = \,1}^{18} {({x_i}\, - \,\,8)\,\, = \,\,9} $ અને $\,\sum\limits_{i\, = \,1}^{18} {{{({x_i}\, - \,\,8)}^2}\, = \,\,45} ,\,$ હોય, તો $\,{{\text{x}}_{\text{1}}},\,\,{x_2},\,........\,\,{x_{18}}$ નું પ્રમાણિત વિચલન શોધો .
$3/4$
$5/2$
$1/2$
$3/2$
ધારોકે $12$ અવલોકનોના મધ્યક અને વિચરણ અનુક્રમે $\frac{9}{2}$ અને $4$ છે પછી એવું જોવામાં આવ્યું કે બે અવલોકનો $7$ અને $14$ ને બદલે અનુક્રમે $9$ અને $10$ ગણતરીમાં લેવામાં આવ્યા હતા. જો સાચુ વિયરણ $\frac{m}{n}$ હોય, જ્યાં $m$ અને $n$ પરસ્પર અવિભાજ્ય છે,તો $m + n =.........$
નીચે આપેલ આવૃતિ વિતરણ માટે મધ્યક અને પ્રમાણિત વિચલન મેળવો
$\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|} \hline \text { Marks } & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\ \hline \text { Frequency } & 1 & 6 & 6 & 8 & 8 & 2 & 2 & 3 & 0 & 2 & 1 & 0 & 0 & 0 & 1 \\ \hline \end{array}$
પ્રયોગના $5$ અલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $4 $ અને $5.2$ છે. જો આ અવલોકનો પૈકી ત્રણ $1, 2$ અને $6,$ હોય તો બાકીના અવલોકનો કયા હશે ?
સંખ્યાઓ $3, 4, 5, 6, 7 $ નું સરેરાશ વિચલન શોધો.
નીચે આપેલ આવૃત્તિ-વિતરણ માટે મધ્યક, વિચરણ અને પ્રમાણિત વિચલન શોધો.
વર્ગ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
આવૃત્તિ |
$3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |