ધારો કે $x_1, x_2, ……, x_n $ એ $n$ અવલોકનો છે અને ધારો કે $\bar x$એ એમનો સમાંતર મધ્યક છે અને $\sigma^2$ એ તેમનું વિચરણ છે.
વિધાન $ - 1 : 2x_1, 2x_2, ……, 2x_n$ નું વિચરણ $4\sigma^2$ છે.
વિધાન $- 2 : 2x_1, 2x_2, ….., 2x_n$ નો સમાંતર મધ્યક $4\,\bar x$છે.
વિધાન $- 1$ સાચું છે. વિધાન $ - 2$ ખોટું છે.
વિધાન $- 1$ ખોટું છે. વિધાન $- 2$ સાચું છે.
વિધાન $- 1 $ સાચું છે, વિધાન $ - 2$ સાચું છે. વિધાન $- 2$ એ સાચું છે, વિધાન $- 1 $ માટે સાચી સમજૂતી છે.
વિધાન $- 1 $ સાચું છે, વિધાન $- 2$ સાચું છે. વિધાન $- 2$ એ વિધાન $- 1 $ માટે સાચી સમજૂતી નથી.
આપેલ પ્રત્યેક માહિતી માટે મધ્યક અને વિચરણ શોધો :
પ્રથમ $n-$ પ્રાકૃતિક સંખ્યાઓ
$7$ અવલોકનો, $1, 2, 3, 4, 5, 6. 7 $ નું પ્રમાણિત વિચલન :
ધારો કે $n $ અવલોકનો $x_1, x_2, ….., x_n$ એવો છે કે જેથી $\sum {x_i}^2 = 400 $ અને $\sum x_i = 80$ થાય તો નીચેના પૈકી $n$ કેટલી શક્ય કિંમતો મળે ?
આપેલ માહિતીમાં $n$ અવલોકનો ${x_1},{x_2},......,{x_n}.$ છે જો $\sum\limits_{i - 1}^n {{{({x_i} + 1)}^2}} = 9n$ અને $\sum\limits_{i - 1}^n {{{({x_i} - 1)}^2}} = 5n $ હોય તો આ માહિતીનો પ્રમાણિત વિચલન મેળવો
જો $v_1 =$ $\{13, 1 6, 1 9, . . . . . , 103\}$ નો વિચરણ અને $v_2 =$ $\{20, 26, 32, . . . . . , 200\}$ નો વિચરણ હોય તો $v_1 : v_2$ મેળવો.