આપેલ આવૃત્તિ વિતરણ માટે મધ્યક અને વિચરણ શોધો.

વર્ગ  $0-10$ $10-20$ $20-30$ $30-40$ $40-50$
આવૃત્તિ  $5$ $8$ $15$ $16$ $6$

Vedclass pdf generator app on play store
Vedclass iOS app on app store
Class Frequency ${f_i}$ Mid-point ${x_i}$ ${y_i} = \frac{{{x_i} - 25}}{{10}}$ ${y_i}^2$ ${f_i}{y_i}$ ${f_i}{y_i}^2$
$0-10$ $5$ $5$ $-2$ $4$ $-10$ $20$
$10-20$ $8$ $15$ $-1$ $1$ $-8$ $8$
$20-30$ $15$ $25$ $0$ $0$ $0$ $0$
$30-40$ $16$ $35$ $1$ $1$ $16$ $16$
$40-50$ $6$ $45$ $2$ $4$ $12$ $24$
  $50$       $10$ $68$

Mean, $\bar x = A + \frac{{\sum\limits_{i = 1}^5 {{f_i}{y_i}} }}{N} \times h$

$ = 25 + \frac{{10}}{{50}} \times 10 = 25 + 2 = 27$

Variance, $\left( {{\sigma ^2}} \right) = \frac{{{h^2}}}{{{N^2}}}\left[ {N\sum\limits_{i = 1}^5 {{f_i}{y_i}^2 - {{\left( {\sum\limits_{i = 1}^5 {{f_i}{y_i}} } \right)}^2}} } \right]$

$=\frac{(10)^{2}}{(50)^{2}}\left[50 \times 68-(10)^{2}\right]$

$=\frac{1}{25}[3400-100]=\frac{3300}{25}$

$=132$

Similar Questions

જો વિતરણના વિચરણ અને પ્રમાણિત વિચલનનો સહગુણક અનુક્રમે $50\%$  અને $20\%$  હોય તો તેનો મધ્યક શું થાય ?

પ્રથમ $20$ પ્રાકૃતિક સંખ્યાઓનું વિચરણ શોધો.

જો $X=\{\mathrm{x} \in \mathrm{N}: 1 \leq \mathrm{x} \leq 17\}$ અને $\mathrm{Y}=\{\mathrm{ax}+\mathrm{b}: \mathrm{x} \in \mathrm{X}$ and $\mathrm{a}, \mathrm{b} \in \mathrm{R}, \mathrm{a}>0\} .$ તથા $Y$ ના બધા ઘટકોનો મધ્યક અને વિચરણ અનુક્રમે $17$ અને $216$ હોય તો $a + b$ ની કિમત શોધો 

  • [JEE MAIN 2020]

આપેલ આવૃતિ વિતરણ :

ચલ $( x )$ $x _{1}$ $x _{1}$ $x _{3} \ldots \ldots x _{15}$
આવૃતિ $(f)$ $f _{1}$ $f _{1}$ $f _{3} \ldots f _{15}$

જ્યાં $0< x _{1}< x _{2}< x _{3}<\ldots .< x _{15}=10$ અને $\sum \limits_{i=1}^{15} f_{i}>0,$ હોય તો પ્રમાણિત વિચલન ............ ના હોય શકે 

  • [JEE MAIN 2020]

અવલોકનોનાં બે ગણના આંકડાઓ નીચે મુજબ આપેલ છે :

  કદ મધ્યક વિચરણ
અવલોકન $I$ $10$ $2$ $2$
અવલોકન $II$ $n$ $3$ $1$

જો બંને અવલોકનોનાં સંયુક્ત ગણનો વિચરણ $\frac{17}{9}$ હોય, તો $n$ નું મૂલ્ય  ..... છે.

  • [JEE MAIN 2021]