એક $x$ પરના પ્રયોગના $15$ અવલોકન છે કે જેથી $\sum {x^2} = 2830$, $\sum x = 170$.જો આપેલ અવલોકનમાંથી અવલોકન $20$ ખોટુ છે અને તેના બદલામાં અવલોકન $30$ લેવામાં આવે છે તો નવી માહિતીનું વિચરણ મેળવો.
$78.00$
$188.66$
$177.33$
$8.33$
આપેલ માહિતીમાં $n$ અવલોકનો ${x_1},{x_2},......,{x_n}.$ છે જો $\sum\limits_{i - 1}^n {{{({x_i} + 1)}^2}} = 9n$ અને $\sum\limits_{i - 1}^n {{{({x_i} - 1)}^2}} = 5n $ હોય તો આ માહિતીનો પ્રમાણિત વિચલન મેળવો
વીસ અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $10$ અને $2$ છે.પુનઃતપાસ કરતાં માલૂમ પડ્યું કે અવલોકન $8$ ખોટું છે. ખોટા અવલોકનને બદલે $12$ મૂકવામાં આવે તો સાચો મધ્યક અને સાચું પ્રમાણિત વિચલન શોધો.
વર્ગના $100$ વિર્ધાર્થીંઓના ગણિતના ગુણનો મધ્યક $72$ છે. જો છોકરાઓની સંખ્યા $70 $ હોય અને તેમના ગુણનો મધ્યક $75$ હોય તો વર્ગમાં છોકરીઓનાં ગુણનો મધ્યક શોધો ?
$200$ અને $300$ કદ વાળા બે સમૂહનો મધ્યક અનુક્રમે $25 $ અને $10 $ છે. તેમનું પ્રમાણિત વિચલન અનુક્રમે $3$ અને $4$ છે. $500$ કદના સંયુક્ત નમૂનાનું વિચરણ કેટલું થાય છે ?
વિધાન $- 1$ : પ્રથમ $n$ યુગ્મ પ્રાકૃતિક સંખ્યાઓનું વિચરણ $\frac{{{n^2}\, - \,\,1}}{3}$છે.
વિધાન $- 2$ : પ્રથમ $n$ અયુગ્મ પ્રાકૃતિક સંખ્યાઓનો સરવાળો $n^2$ છે અને પ્રથમ $n$ અયુગ્મ પ્રાકૃતિક સંખ્યાઓના વર્ગનો સરવાળો $\frac{{n(4{n^2}\, + \,\,1)}}{3}$છે.