સાત અવલોકનોના મધ્યક તથા વિચરણ અનુક્રમે $8$ અને $16$ છે. જો આમાંથી પાંચ અવલોકનો $2, 4, 10, 12, 14$ હોય, તો બાકીનાં બે અવલોકનો શોધો.
Let the remaining two observations be $x$ and $y$.
The observations are $2,4,10,12,14, x , y$
Mean, $\bar{x}=\frac{2+4+10+12+14+x+y}{7}=8$
$\Rightarrow 56=42+x+y$
$\Rightarrow x+y=14$
Varaiance $ = 16 = \frac{1}{n}\sum\limits_{i = 1}^7 {{{\left( {{x_i} - \bar x} \right)}^2}} $
$16=\frac{1}{7}[(-6)^{2}+(-4)^{2}+(2)^{2}$
$+(4)^{2}+(6)^{2}+x^{2}+y^{2}-2 \times 8(x+y)+2 \times(8)^{2}]$
$16=\frac{1}{7}\left[36+16+4+16+36+x^{2}+y^{2}-16(14)+2(64)\right]$ .......[ using $(1)$ ]
$16=\frac{1}{7}\left[108+x^{2}+y^{2}-224+128\right]$
$16=\frac{1}{7}\left[12+x^{2}+y^{2}\right]$
$\Rightarrow x^{2}+y^{2}=112-12=100$
$\Rightarrow x^{2}+y^{2}=100$ ........$(2)$
From $(1),$ we obtain
$x^{2}+y^{2}+2 x y=196$ .........$(3)$
From $(2)$ and $(3),$ we obtain
$2 x y=196-100$
$\Rightarrow 2 x y=96$ .........$(4)$
Subtracting $(4)$ from $(2),$ we obtain
$x^{2}+y^{2}-2 x y=100-96$
$\Rightarrow(x-y)^{2}=4$
$\Rightarrow x-y=\pm 2$ .........$(5)$
Therefore, from $(1)$ and $(5),$ we obtain
$x=8$ and $y=6$ when $x-y=2$
$x=6$ and $y=8$ when $x-y=-2$
Thus, the remaining observations are $6$ and $8 .$
વિચલ $x$ અને $u $ એ $u\,\, = \,\,\frac{{x\,\, - \,\,a}}{h}$વડે સંબંધીત હોય તો $\sigma_x$ અને $\sigma_u$ વચ્ચેનો સાચો સંબંધ $= …….$
જો એક વિતરણ માટે $\Sigma(x-5)=3, \Sigma(x-5)^{2}=43$ અને વસ્તુઓની સંખ્યા $18$ હોય તો તેનો મધ્યક અને પ્રમાણિત વિચલન મેળવો
અવલોકન $a,b,8,5,10 $ નો મધ્યક $ 6$ છે અને વિચરણ $6.80 $ છે. તો નીચે આપેલ પૈકી એક $a$ અને $b$ શકય કિંમત થશે.
સંખ્યાઓ $3, 4, 5, 6, 7 $ નું સરેરાશ વિચલન શોધો.
જો આપેલ દરેક $n$ અવલોકનો ને કોઈ ધન સંખ્યા $'k'$ વડે ગુણવવામાં આવે તો નવા અવલોકનોના ગણ માટે