સાત અવલોકનોના મધ્યક તથા વિચરણ અનુક્રમે $8$ અને $16$ છે. જો આમાંથી પાંચ અવલોકનો $2, 4, 10, 12, 14$ હોય, તો બાકીનાં બે અવલોકનો શોધો. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let the remaining two observations be $x$ and $y$.

The observations are $2,4,10,12,14, x , y$

Mean, $\bar{x}=\frac{2+4+10+12+14+x+y}{7}=8$

$\Rightarrow 56=42+x+y$

$\Rightarrow x+y=14$

Varaiance   $ = 16 = \frac{1}{n}\sum\limits_{i = 1}^7 {{{\left( {{x_i} - \bar x} \right)}^2}} $

$16=\frac{1}{7}[(-6)^{2}+(-4)^{2}+(2)^{2}$

$+(4)^{2}+(6)^{2}+x^{2}+y^{2}-2 \times 8(x+y)+2 \times(8)^{2}]$

$16=\frac{1}{7}\left[36+16+4+16+36+x^{2}+y^{2}-16(14)+2(64)\right]$       .......[ using $(1)$ ]

$16=\frac{1}{7}\left[108+x^{2}+y^{2}-224+128\right]$

$16=\frac{1}{7}\left[12+x^{2}+y^{2}\right]$

$\Rightarrow x^{2}+y^{2}=112-12=100$

$\Rightarrow x^{2}+y^{2}=100$        ........$(2)$

From $(1),$ we obtain

$x^{2}+y^{2}+2 x y=196$         .........$(3)$

From $(2)$ and $(3),$ we obtain

$2 x y=196-100$

$\Rightarrow 2 x y=96$         .........$(4)$

Subtracting $(4)$ from $(2),$ we obtain

$x^{2}+y^{2}-2 x y=100-96$

$\Rightarrow(x-y)^{2}=4$

$\Rightarrow x-y=\pm 2$          .........$(5)$

Therefore, from $(1)$ and $(5),$ we obtain

$x=8$ and $y=6$ when $x-y=2$

$x=6$ and $y=8$ when $x-y=-2$

Thus, the remaining observations are $6$ and $8 .$

Similar Questions

વિચલ $x$  અને $u $ એ $u\,\, = \,\,\frac{{x\,\, - \,\,a}}{h}$વડે સંબંધીત હોય તો $\sigma_x$ અને $\sigma_u$ વચ્ચેનો સાચો સંબંધ $= …….$ 

જો એક વિતરણ માટે $\Sigma(x-5)=3, \Sigma(x-5)^{2}=43$ અને વસ્તુઓની સંખ્યા $18$ હોય તો તેનો મધ્યક અને પ્રમાણિત વિચલન મેળવો 

અવલોકન $a,b,8,5,10 $ નો મધ્યક $ 6$ છે અને વિચરણ $6.80 $ છે. તો નીચે આપેલ પૈકી એક $a$  અને $b$  શકય કિંમત થશે.

  • [AIEEE 2008]

સંખ્યાઓ $3, 4, 5, 6, 7 $ નું સરેરાશ વિચલન શોધો.

જો આપેલ દરેક $n$ અવલોકનો ને કોઈ ધન સંખ્યા $'k'$ વડે ગુણવવામાં આવે તો નવા અવલોકનોના ગણ માટે