સાત અવલોકનોના મધ્યક તથા વિચરણ અનુક્રમે $8$ અને $16$ છે. જો આમાંથી પાંચ અવલોકનો $2, 4, 10, 12, 14$ હોય, તો બાકીનાં બે અવલોકનો શોધો.
Let the remaining two observations be $x$ and $y$.
The observations are $2,4,10,12,14, x , y$
Mean, $\bar{x}=\frac{2+4+10+12+14+x+y}{7}=8$
$\Rightarrow 56=42+x+y$
$\Rightarrow x+y=14$
Varaiance $ = 16 = \frac{1}{n}\sum\limits_{i = 1}^7 {{{\left( {{x_i} - \bar x} \right)}^2}} $
$16=\frac{1}{7}[(-6)^{2}+(-4)^{2}+(2)^{2}$
$+(4)^{2}+(6)^{2}+x^{2}+y^{2}-2 \times 8(x+y)+2 \times(8)^{2}]$
$16=\frac{1}{7}\left[36+16+4+16+36+x^{2}+y^{2}-16(14)+2(64)\right]$ .......[ using $(1)$ ]
$16=\frac{1}{7}\left[108+x^{2}+y^{2}-224+128\right]$
$16=\frac{1}{7}\left[12+x^{2}+y^{2}\right]$
$\Rightarrow x^{2}+y^{2}=112-12=100$
$\Rightarrow x^{2}+y^{2}=100$ ........$(2)$
From $(1),$ we obtain
$x^{2}+y^{2}+2 x y=196$ .........$(3)$
From $(2)$ and $(3),$ we obtain
$2 x y=196-100$
$\Rightarrow 2 x y=96$ .........$(4)$
Subtracting $(4)$ from $(2),$ we obtain
$x^{2}+y^{2}-2 x y=100-96$
$\Rightarrow(x-y)^{2}=4$
$\Rightarrow x-y=\pm 2$ .........$(5)$
Therefore, from $(1)$ and $(5),$ we obtain
$x=8$ and $y=6$ when $x-y=2$
$x=6$ and $y=8$ when $x-y=-2$
Thus, the remaining observations are $6$ and $8 .$
ધારો કે $X=\{11,12,13, \ldots, 40,41\}$ અને $Y=\{61,62,63, \ldots, 90,91\}$ એ અવલોકનોના બે ગણ છે. જો $\bar{x}$ અને $\bar{y}$ અનુક્રમે તેમના મધ્યક હોય તથા $X \cup Y$ માં ના તમામ અવલોકનો નું વિચરણ $\sigma^2$ હોય, તો $\left|\bar{x}+\bar{y}-\sigma^2\right|=...............$
ધારોકે છ સંખ્યાઓ $a_1, a_2, a_3, a_4, a_5, a_6$ સમાંતર શ્રેણીમાં છે અને $a_1+a_3=10$. જો આ છ સંખ્યાઓ નું મધ્યક $\frac{19}{2}$ હોય અને તેમનું વિયરણ $\sigma^2$ હોય, તો $8 \sigma^2=........$
$50 $ મધ્યક વાળા $10$ અવલોકનોના વિચલનના વર્ગનો સરવાળો $250 $ હોય તો વિચરણનો ચલનાંક કેટલો થાય ?
$10$ અવલોકનોના સમૂહનો મધ્યક $5 $ અને પ્રમાણિત વિચલન $2\sqrt 6 $ છે . બીજા $20 $ અવલોકનોના સમૂહનો મધ્યક $5$ અને પ્રમાણિત વિચલન $3\sqrt 2 $ થાય તો $30$ અવલોકનોનાં સંયુક્ત સમૂહનું પ્રમાણિત વિચલન કેટલું થાય ?
$3$ ખામી વાળી $12$ ચીજેના એક જથ્થામાથી યાદસ્છિક રીતે $5$ ચીજોનો એક નિદર્શ લેવામાં આવે છે. ધારોકે યાદચ્છિક ચલ $X$ એ નિર્દશ ની ખામી વાળી ચીજોની સંખ્યા દર્શાવે છે. ધારોકે નિર્દશમાં ની ચીજો પુરવણીરહિત એક પછી એક લેવામાં આવે છે. જે $X$ નું વિચરણ $\frac{m}{n}$ હોય, તો જ્યાં ગુ.સા.આ. $(m,\left.n\right)=1$, તો $n-m=$ ..............