In an experiment with $15$ observations on $x$, the following results were available $\sum {x^2} = 2830$, $\sum x = 170$. On observation that was $20$ was found to be wrong and was replaced by the correct value $30$. Then the corrected variance is..
$78$
$188.66$
$177.33$
$8.33$
If for a distribution $\Sigma(x-5)=3, \Sigma(x-5)^{2}=43$ and the total number of item is $18,$ find the mean and standard deviation.
Let $ \bar x , M$ and $\sigma^2$ be respectively the mean, mode and variance of $n$ observations $x_1 , x_2,...,x_n$ and $d_i\, = - x_i - a, i\, = 1, 2, .... , n$, where $a$ is any number.
Statement $I$: Variance of $d_1, d_2,.....d_n$ is $\sigma^2$.
Statement $II$ : Mean and mode of $d_1 , d_2, .... d_n$ are $-\bar x -a$ and $- M - a$, respectively
If the standard deviation of the numbers $ 2,3,a $ and $11$ is $3.5$ then which of the following is true ?
Let the mean and variance of four numbers $3,7, x$ and $y(x>y)$ be $5$ and $10$ respectively. Then the mean of four numbers $3+2 \mathrm{x}, 7+2 \mathrm{y}, \mathrm{x}+\mathrm{y}$ and $x-y$ is ..... .
Statement $1$ : The variance of first $n$ odd natural numbers is $\frac{{{n^2} - 1}}{3}$
Statement $2$ : The sum of first $n$ odd natural number is $n^2$ and the sum of square of first $n$ odd natural numbers is $\frac{{n\left( {4{n^2} + 1} \right)}}{3}$