જો $\left(1+\frac{1}{x}\right)^6\left(1+x^2\right)^7\left(1-x^3\right)^8 ; x \neq 0$ ના વિસ્તરણમાં $x^{30}$ નો સહગુણક $\alpha$ હોય, તો $|\alpha|=$......................
$676$
$677$
$678$
$679$
$(x-1) (x- 2) (x-3)...............(x-10)$ ના વિસ્તરણમાં $x^8$ નો સહગુણક મેળવો
જો $\left(1-3 x+10 x^2\right)^{\mathrm{n}}$ ના વિસ્તરણમાં તમામ સહગુણકોના સરવાળાને $\mathrm{A}$ વડે દર્શાવાય તથા $\left(1+x^2\right)^{\mathrm{n}}$ ના વિસ્તરણમાં તમામ સહગુણકોના સરવાળાને $B$ વડે દર્શાવાય, તો :
જો બધા ધન પૂર્ણાંક $r> 1, n > 2$ માટે $( 1 + x)^{2n}$ ના વિસ્તરણમાં $x$ ની ઘાત $(3r)$ અને $(r + 2)$ ના સહગુણક સરખા હોય તો $n$ ની કિમત મેળવો.
$\sum_{\mathrm{k}=0}^{20}\left({ }^{20} \mathrm{C}_{\mathrm{k}}\right)^{2}$ ની કિમંત મેળવો.
$\left( \begin{array}{l}30\\0\end{array} \right)\,\left( \begin{array}{l}30\\10\end{array} \right) - \left( \begin{array}{l}30\\1\end{array} \right)\,\left( \begin{array}{l}30\\11\end{array} \right)$ + $\left( \begin{array}{l}30\\2\end{array} \right)\,\left( \begin{array}{l}30\\12\end{array} \right) + ....... + \left( \begin{array}{l}30\\20\end{array} \right)\,\left( \begin{array}{l}30\\30\end{array} \right) = .$ . ..