If the Coefficient of $x^{30}$ in the expansion of $\left(1+\frac{1}{x}\right)^6\left(1+x^2\right)^7\left(1-x^3\right)^8 ; x \neq 0$ is $\alpha$, then $|\alpha|$ equals
$676$
$677$
$678$
$679$
Let $C _{ r }$ denote the binomial coefficient of $x ^{ r }$ in the expansion of $(1+x)^{10}$. If $\alpha, \beta \in R$. $C _{1}+3 \cdot 2 C _{2}+5 \cdot 3 C _{3}+\ldots$ upto $10$ terms $=\frac{\alpha \times 2^{11}}{2^{\beta}-1}\left( C _{0}+\frac{ C _{1}}{2}+\frac{ C _{2}}{3}+\ldots . .\right.$ upto 10 terms $)$ then the value of $\alpha+\beta$ is equal to
The sum of coefficients in the expansion of ${(x + 2y + 3z)^8}$ is
If ${a_r}$ is the coefficient of ${x^r}$, in the expansion of ${(1 + x + {x^2})^n}$, then ${a_1} - 2{a_2} + 3{a_3} - .... - 2n\,{a_{2n}} = $
The expression $x^3 - 3x^2 - 9x + c$ can be written in the form $(x - a)^2 (x - b)$ if the values of $c$ is
The value of $\frac{{{C_1}}}{2} + \frac{{{C_3}}}{4} + \frac{{{C_5}}}{6} + .....$ is equal to