જો બધા ધન પૂર્ણાંક  $r> 1, n > 2$ માટે $( 1 + x)^{2n}$  ના વિસ્તરણમાં $x$ ની ઘાત $(3r)$ અને  $(r + 2)$ ના સહગુણક સરખા હોય તો $n$ ની કિમત મેળવો. 

  • [JEE MAIN 2013]
  • A

    $2r+ 1$

  • B

    $2r- 1$

  • C

    $3r$

  • D

    $r+1$

Similar Questions

$n\left[ {x - \left( {\frac{{^n{C_0}{ + ^n}{C_1}}}{{^n{C_0}}}} \right)} \right]\left[ {\frac{x}{2} - \left( {\frac{{^n{C_1}{ + ^n}{C_2}}}{{^n{C_1}}}} \right)} \right]\left[ {\frac{x}{3} - \left( {\frac{{^n{C_2}{ + ^n}{C_3}}}{{^n{C_2}}}} \right)} \right].....$ $ \left[ {\frac{x}{n} - \left( {\frac{{^n{C_{n - 1}}{ + ^n}{C_n}}}{{^n{C_{n - 1}}}}} \right)} \right]$ ના વિસ્તરણમાં $x^{n-6}$ નો સહગુણક મેળવો 

(જ્યાં $n = n . (n -1) . (n -2).... 3.2.1$)

$x^2(1+x)^{98}+x^3(1+x)^{97}+x^4(1+x)^{96}+\ldots+x^{54}(1+x)^{46}$ ના વિસ્તરણમાં $x^{70}$ નો સહગુણક ${ }^{99} \mathrm{C}_{\mathrm{p}}-{ }^{46} \mathrm{C}_{\mathrm{q}}$ છે. તો $p+q$ ની શક્ય કિંમત ........... છે. 

  • [JEE MAIN 2024]

$\left[ {{{\left( {1 + x} \right)}^{100}} + {{\left( {1 + {x^2}} \right)}^{100}}{{\left( {1 + {x^3}} \right)}^{100}}} \right]$  ના વિસ્તરણમાં કુલ કેટલા પદો હોય ?

જો $n$ એ ધન પૂર્ણાક છે કે જેથી $n \ge 3$,  હોય તો શ્રેણી $1 . n - \frac{{\left( {n\, - \,1} \right)}}{{1\,\,!}} (n - 1) + \frac{{\left( {n\, - \,1} \right)\,\,\left( {n\, - \,2} \right)}}{{2\,\,!}} (n - 2) $$-  \frac{{\left( {n\, - \,1} \right)\,\,\left( {n\, - \,2} \right)\,\,\left( {n\, - \,3} \right)}}{{3\,\,!}} (n - 3) + ......$ ના $n$ પદોનો સરવાળો મેળવો 

જો ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + ... + {C_n}{x^n}$, તો ${C_0} + {C_2} + {C_4} + {C_6} + .....$ = . . .