જો $P(B) = \frac{3}{4}$, $P(A \cap B \cap \bar C) = \frac{1}{3}{\rm{ }}$ અને $P(\bar A \cap B \cap \bar C) = \frac{1}{3},$ તો $P(B \cap C)$ = . . .
$\frac{1}{{12}}$
$\frac{1}{6}$
$\frac{1}{{15}}$
$\frac{1}{9}$
આપેલ બે નિરપેક્ષ ઘટનાઓ $A$ અને $B$ માટે $P(A) = 0.3$ અને $P(B) = 0.6$ હોય, તો $ P (A$ અને $B)$ શોધો.
બે વિદ્યાર્થીઓ અનિલ અને આશિમા એક પરીક્ષામાં હાજર રહે છે. અનિલની પરીક્ષામાં પાસ થવાની સંભાવના $0.05$ અને આશિમાની પરીક્ષામાં પાસ થવાની સંભાવના $0.10$ છે. બંનેની પરીક્ષામાં પાસ થવાની સંભાવના $0.02 $ છે. નીચેની ઘટનાની સંભાવના શોધો : બંનેમાંથી ઓછામાં ઓછી એક વ્યક્તિ પરીક્ષામાં પાસ નહિ થાય.
ધારો કે $X$ અને $Y$ ઘટનાઓ એવી હોય કે જેથી $P(X \cup Y) = P(X \cap Y).$
વિધાન $- 1 : $$P(X \cap Y ) = P(X' \cap Y') = 0$
વિધાન $- 2 :$ $P(X) + P(Y) = 2P(X \cap Y).$
જો $A$ અને $B$ બે ઘટનાઓ છે કે જેમાં $P\,(A) = 0.3$ અને $P\,(A \cup B) = 0.8$. જો $A$ અને $B$ એ નિરપેક્ષ ઘટનાઓ હોય,તો $P(B) = $
$A $ અને $B$ એક ચોક્કસ સવાલને સ્વતંત્ર રીતે ઉકેલે તેની સંભાવના અનુક્રમે , $\frac{1}{2}$ અને $\frac{1}{3}$ છે. જો $A$ અને $B$ બંને સ્વતંત્ર રીતે સવાલને ઉકેલવાનો પ્રયત્ન કરે, તો બેમાંથી એકને જ સવાલનો ઉકેલ મળે તેની સંભાવના શોધો